Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training
- URL: http://arxiv.org/abs/2305.15157v1
- Date: Wed, 24 May 2023 13:52:18 GMT
- Title: Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training
- Authors: Yifan Shi, Yingqi Liu, Yan Sun, Zihao Lin, Li Shen, Xueqian Wang,
Dacheng Tao
- Abstract summary: Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
- Score: 67.67045085186797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized federated learning (PFL) aims to produce the greatest
personalized model for each client to face an insurmountable problem--data
heterogeneity in real FL systems. However, almost all existing works have to
face large communication burdens and the risk of disruption if the central
server fails. Only limited efforts have been used in a decentralized way but
still suffers from inferior representation ability due to sharing the full
model with its neighbors. Therefore, in this paper, we propose a personalized
FL framework with a decentralized partial model training called DFedAlt. It
personalizes the "right" components in the modern deep models by alternately
updating the shared and personal parameters to train partially personalized
models in a peer-to-peer manner. To further promote the shared parameters
aggregation process, we propose DFedSalt integrating the local Sharpness Aware
Minimization (SAM) optimizer to update the shared parameters. It adds proper
perturbation in the direction of the gradient to overcome the shared model
inconsistency across clients. Theoretically, we provide convergence analysis of
both algorithms in the general non-convex setting for decentralized partial
model training in PFL. Our experiments on several real-world data with various
data partition settings demonstrate that (i) decentralized training is more
suitable for partial personalization, which results in state-of-the-art (SOTA)
accuracy compared with the SOTA PFL baselines; (ii) the shared parameters with
proper perturbation make partial personalized FL more suitable for
decentralized training, where DFedSalt achieves most competitive performance.
Related papers
- FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [18.38030098837294]
Federated learning is a framework for distributed clients to collaboratively train a machine learning model using local data.
We propose FedSPD, an efficient personalized federated learning algorithm for the decentralized setting.
We show that FedSPD learns accurate models even in low-connectivity networks.
arXiv Detail & Related papers (2024-10-24T15:48:34Z) - Decentralized Directed Collaboration for Personalized Federated Learning [39.29794569421094]
We concentrate on the Decentralized Personalized Learning (DPFL) that performs distributed training model computation.
We propose a directed collaboration framework by incorporating textbfDecentralized textbfFederated textbfPartial textbfGradient textbfPedGP.
arXiv Detail & Related papers (2024-05-28T06:52:19Z) - Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization [23.340237814344377]
Federated Learning (FL) has emerged as a groundbreaking distributed learning paradigm enabling clients to train a global model collaboratively without exchanging data.
We introduce FeDEQ, a novel FL framework that incorporates deep equilibrium learning and consensus optimization to harness compact global data representations for efficient personalization.
We show that FeDEQ matches the performance of state-of-the-art personalized FL methods, while significantly reducing communication size by up to 4 times and memory footprint by 1.5 times during training.
arXiv Detail & Related papers (2023-09-27T13:48:12Z) - Group Personalized Federated Learning [15.09115201646396]
Federated learning (FL) can help promote data privacy by training a shared model in a de-centralized manner on the physical devices of clients.
In this paper, we present the group personalization approach for applications of FL.
arXiv Detail & Related papers (2022-10-04T19:20:19Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Achieving Personalized Federated Learning with Sparse Local Models [75.76854544460981]
Federated learning (FL) is vulnerable to heterogeneously distributed data.
To counter this issue, personalized FL (PFL) was proposed to produce dedicated local models for each individual user.
Existing PFL solutions either demonstrate unsatisfactory generalization towards different model architectures or cost enormous extra computation and memory.
We proposeFedSpa, a novel PFL scheme that employs personalized sparse masks to customize sparse local models on the edge.
arXiv Detail & Related papers (2022-01-27T08:43:11Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning (FL) is a framework for on-device collaborative training of machine learning models.
First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client.
We study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions.
arXiv Detail & Related papers (2021-08-23T15:47:53Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.