Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting
- URL: http://arxiv.org/abs/2207.05064v1
- Date: Sat, 9 Jul 2022 19:21:00 GMT
- Title: Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting
- Authors: Aosong Feng and Leandros Tassiulas
- Abstract summary: Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns.
Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately.
We propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions.
- Score: 6.867331860819595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic flow forecasting on graphs has real-world applications in many
fields, such as transportation system and computer networks. Traffic
forecasting can be highly challenging due to complex spatial-temporal
correlations and non-linear traffic patterns. Existing works mostly model such
spatial-temporal dependencies by considering spatial correlations and temporal
correlations separately and fail to model the direct spatial-temporal
correlations. Inspired by the recent success of transformers in the graph
domain, in this paper, we propose to directly model the cross-spatial-temporal
correlations on the spatial-temporal graph using local multi-head
self-attentions. To reduce the time complexity, we set the attention receptive
field to the spatially neighboring nodes, and we also introduce an adaptive
graph to capture the hidden spatial-temporal dependencies. Based on these
attention mechanisms, we propose a novel Adaptive Graph Spatial-Temporal
Transformer Network (ASTTN), which stacks multiple spatial-temporal attention
layers to apply self-attention on the input graph, followed by linear layers
for predictions. Experimental results on public traffic network datasets,
METR-LA PEMS-BAY, PeMSD4, and PeMSD7, demonstrate the superior performance of
our model.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction [10.3426659705376]
We propose a novel dynamic graph convolution network with attention fusion to model synchronous spatial-temporal correlations.
We conduct extensive experiments in four real-world traffic datasets to demonstrate that our method surpasses state-of-the-art performance compared to 18 baseline methods.
arXiv Detail & Related papers (2023-02-24T12:21:30Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - Spatial-Temporal Dynamic Graph Attention Networks for Ride-hailing
Demand Prediction [3.084885761077852]
Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences.
Existing ride-hailing demand prediction methods only assign the same importance to different neighbor regions.
We propose the Spatial-Temporal Dynamic Graph Attention Network (STDGAT), a novel ride-hailing demand prediction method.
arXiv Detail & Related papers (2020-06-07T13:00:19Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.