Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction
- URL: http://arxiv.org/abs/2302.12598v2
- Date: Wed, 6 Sep 2023 09:06:33 GMT
- Title: Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction
- Authors: Xunlian Luo, Chunjiang Zhu, Detian Zhang, Qing Li
- Abstract summary: We propose a novel dynamic graph convolution network with attention fusion to model synchronous spatial-temporal correlations.
We conduct extensive experiments in four real-world traffic datasets to demonstrate that our method surpasses state-of-the-art performance compared to 18 baseline methods.
- Score: 10.3426659705376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and real-time traffic state prediction is of great practical
importance for urban traffic control and web mapping services. With the support
of massive data, deep learning methods have shown their powerful capability in
capturing the complex spatialtemporal patterns of traffic networks. However,
existing approaches use pre-defined graphs and a simple set of spatial-temporal
components, making it difficult to model multi-scale spatial-temporal
dependencies. In this paper, we propose a novel dynamic graph convolution
network with attention fusion to tackle this gap. The method first enhances the
interaction of temporal feature dimensions, and then it combines a dynamic
graph learner with GRU to jointly model synchronous spatial-temporal
correlations. We also incorporate spatial-temporal attention modules to
effectively capture longrange, multifaceted domain spatial-temporal patterns.
We conduct extensive experiments in four real-world traffic datasets to
demonstrate that our method surpasses state-of-the-art performance compared to
18 baseline methods.
Related papers
- Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatial-temporal traffic modeling with a fusion graph reconstructed by
tensor decomposition [10.104097475236014]
Graph convolutional networks (GCNs) have been widely used in traffic flow prediction.
The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs.
This paper proposes reconstructing the binary adjacency matrix via tensor decomposition.
arXiv Detail & Related papers (2022-12-12T01:44:52Z) - Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting [6.867331860819595]
Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns.
Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately.
We propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions.
arXiv Detail & Related papers (2022-07-09T19:21:00Z) - CDGNet: A Cross-Time Dynamic Graph-based Deep Learning Model for Traffic
Forecasting [7.169972421976212]
We propose a novel cross-time dynamic graph-based deep learning model, named CDGNet, for traffic forecasting.
We design a gating mechanism to sparse the cross-time dynamic graph, which conforms to the sparse spatial correlations in the real world.
arXiv Detail & Related papers (2021-12-06T01:56:07Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.