論文の概要: Towards Personalized Healthcare in Cardiac Population: The Development
of a Wearable ECG Monitoring System, an ECG Lossy Compression Schema, and a
ResNet-Based AF Detector
- arxiv url: http://arxiv.org/abs/2207.05138v1
- Date: Mon, 11 Jul 2022 19:08:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 15:01:14.224576
- Title: Towards Personalized Healthcare in Cardiac Population: The Development
of a Wearable ECG Monitoring System, an ECG Lossy Compression Schema, and a
ResNet-Based AF Detector
- Title(参考訳): 心臓集団におけるパーソナライズされたヘルスケアを目指して:ウェアラブルECGモニタリングシステム、ECGロッシー圧縮スキーム、ResNetベースのAF検出器の開発
- Authors: Wei-Ying Yi, Peng-Fei Liu, Sheung-Lai Lo, Ya-Fen Chan, Yu Zhou, Yee
Leung, Kam-Sang Woo, Alex Pui-Wai Lee, Jia-Min Chen and Kwong-Sak Leung
- Abstract要約: 心房細動(AF)は通常、心電図(ECG)を用いて診断される。
本書では、ウェアラブルECGデバイス、モバイルアプリケーション、バックエンドサーバを具現化したパーソナライズされた医療システムの設計と実装について述べる。
- 参考スコア(独自算出の注目度): 19.706400613998703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs) are the number one cause of death worldwide.
While there is growing evidence that the atrial fibrillation (AF) has strong
associations with various CVDs, this heart arrhythmia is usually diagnosed
using electrocardiography (ECG) which is a risk-free, non-intrusive, and
cost-efficient tool. Continuously and remotely monitoring the subjects' ECG
information unlocks the potentials of prompt pre-diagnosis and timely
pre-treatment of AF before the development of any life-threatening
conditions/diseases. Ultimately, the CVDs associated mortality could be
reduced. In this manuscript, the design and implementation of a personalized
healthcare system embodying a wearable ECG device, a mobile application, and a
back-end server are presented. This system continuously monitors the users' ECG
information to provide personalized health warnings/feedbacks. The users are
able to communicate with their paired health advisors through this system for
remote diagnoses, interventions, etc. The implemented wearable ECG devices have
been evaluated and showed excellent intra-consistency (CVRMS=5.5%), acceptable
inter-consistency (CVRMS=12.1%), and negligible RR-interval errors (ARE<1.4%).
To boost the battery life of the wearable devices, a lossy compression schema
utilizing the quasi-periodic feature of ECG signals to achieve compression was
proposed. Compared to the recognized schemata, it outperformed the others in
terms of compression efficiency and distortion, and achieved at least 2x of CR
at a certain PRD or RMSE for ECG signals from the MIT-BIH database. To enable
automated AF diagnosis/screening in the proposed system, a ResNet-based AF
detector was developed. For the ECG records from the 2017 PhysioNet CinC
challenge, this AF detector obtained an average testing F1=85.10% and a best
testing F1=87.31%, outperforming the state-of-the-art.
- Abstract(参考訳): 心臓血管疾患(cvds)は世界で1番目に多い死因である。
心房細動(af)が様々なcvdと強い関連があるという証拠が増えているが、この心不整脈は通常、リスクのない非侵襲的かつ費用効率の高いツールである心電図(ecg)を用いて診断される。
被験者の心電図情報を連続的かつ遠隔に監視することで、生命を脅かす条件や障害が発生する前に、早期診断とAFのタイムリーな前処置の可能性を解き放つ。
最終的に、CVDの死亡率は減少する可能性がある。
本稿では,ウェアラブルecgデバイス,モバイルアプリケーション,バックエンドサーバを具体化するパーソナライズされた医療システムの設計と実装について述べる。
本システムは、ユーザのECG情報を継続的に監視し、パーソナライズされた健康警告/フィードバックを提供する。
ユーザーは、遠隔診断や介入などのために、このシステムを通じてペアの健康アドバイザーとコミュニケーションすることができる。
実装されたウェアラブルECGデバイスは、優れた整合性(CVRMS=5.5%)、許容整合性(CVRMS=12.1%)、無視可能なRRインターバル誤差(ARE<1.4%)を示した。
ウェアラブルデバイスのバッテリ寿命を向上させるために,ecg信号の準周期的特徴を利用した低損失圧縮スキーマを提案し,圧縮を実現する。
認識されたスキーマと比較すると、圧縮効率と歪みで他よりも優れており、MIT-BIHデータベースからのECG信号に対してCRの少なくとも2倍のPRDまたはRMSEを達成した。
提案システムで自動AF診断・スクリーニングを実現するため,ResNetベースのAF検出器を開発した。
2017年のPhystoNet CinCチャレンジのECG記録では、このAF検出器はF1=85.10%の平均テストとF1=87.31%のベストテストを得た。
関連論文リスト
- SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
心房細動(AF)は脳卒中、心臓病、死亡のリスクを著しく増大させる。
光胸腺造影(PPG)信号は、運動人工物や、しばしば起立条件で遭遇する他の要因による腐敗に影響を受けやすい。
本研究では,一部劣化したPSGから正確な予測の維持方法を学習するための新しい深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-04-15T01:07:08Z) - EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection [7.574088346030774]
本稿では, 心電図における異常信号の検出に, 正規信号のラベルのみをトレーニングデータとして用いた。
イメージをパッチに分割して学習し,自動エンコーダをマスクする自己教師型視覚変換器にヒントを得て,脳波異常検出モデルEB-GAMEを導入する。
論文 参考訳(メタデータ) (2024-04-08T13:01:59Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
心電図(Electrocardiogram、ECG)は、心疾患の診断に広く用いられるツールである。
希少な心疾患は、トレーニングデータセットがすべての心疾患を排出できないことを考慮して、従来の心電図解析を用いて診断されることがある。
本稿では、異常検出を用いて不健康状態を特定し、通常の心電図をトレーニング用として用いることを提案する。
論文 参考訳(メタデータ) (2023-08-03T09:16:57Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Performer: A Novel PPG to ECG Reconstruction Transformer For a Digital
Biomarker of Cardiovascular Disease Detection [0.0]
心臓血管疾患(CVD)は死因の上位1つとなり、これらの死亡の4分の3は低所得層で発生している。
心電図 (ECG) は, ユーザ参加の必要性から, 連続心臓モニタリングには有効ではない。
フォトプレチスモグラフィーは容易に収集できるが、精度の制限により臨床応用は制限される。
論文 参考訳(メタデータ) (2022-04-25T17:10:13Z) - Blind ECG Restoration by Operational Cycle-GANs [15.264145425539128]
心電図信号の持続的長期モニタリングは不整脈などの心疾患の早期発見に不可欠である。
非クリニカルECG記録は、ベースライン、信号カット、モーションアーティファクト、QRS振幅の変動、ノイズ、その他の干渉といった深刻なアーティファクトに悩まされることが多い。
サイクル整合型生成対向ネットワーク(Cycle-GAN)を用いた盲検心電図復元のための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-29T19:47:17Z) - ECG Signal Super-resolution by Considering Reconstruction and Cardiac
Arrhythmias Classification Loss [0.0]
圧縮ECG信号を復元するための深層学習型ECG信号スーパーレゾリューションフレームワーク(ESRNet)を提案する。
実験の結果,提案するESRNetフレームワークは10回圧縮されたECG信号を十分に再構成できることがわかった。
論文 参考訳(メタデータ) (2020-12-07T15:43:50Z) - CardioGAN: Attentive Generative Adversarial Network with Dual
Discriminators for Synthesis of ECG from PPG [25.305949034527202]
心電図(Electrocardiogram、ECG)は、心臓活動の電気的測定である。
光胸腺X線写真(英: Photoplethysmogram, PPG)は、血液循環の変化の光学的測定である。
本稿では、PSGを入力とし、ECGを出力として生成する逆モデルであるCardioGANを提案する。
論文 参考訳(メタデータ) (2020-09-30T20:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。