論文の概要: Can Language Models perform Abductive Commonsense Reasoning?
- arxiv url: http://arxiv.org/abs/2207.05155v1
- Date: Thu, 7 Jul 2022 15:52:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-17 16:14:38.933470
- Title: Can Language Models perform Abductive Commonsense Reasoning?
- Title(参考訳): 言語モデルはアブダプティブ・コモンセンス推論を実行できるか?
- Authors: Seungone Kim
- Abstract要約: 帰納的推論(英: Abductive Reasoning)は、一連の観測から最も妥当な仮説を推測するタスクである。
この問題に対処する最もよく知られたベンチマークは、aNLIとaNLGである。
私は、この問題を解決するために試みられた方法論をレビューし、ベースラインモデルを再実装し、現在のアプローチが持つ弱点を分析します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abductive Reasoning is a task of inferring the most plausible hypothesis
given a set of observations. In literature, the community has approached to
solve this challenge by classifying/generating a likely hypothesis that does
not contradict with a past observation and future observation. Some of the most
well-known benchmarks that tackle this problem are aNLI and aNLG (pronounced as
alpha-NLI and alpha-NLG). In this report, I review over some of the
methodologies that were attempted to solve this challenge, re-implement the
baseline models, and analyze some of the weaknesses that current approaches
have. The code and the re-implemented results are available at this link.
- Abstract(参考訳): 帰納的推論(英: Abductive Reasoning)は、一連の観測から最も妥当な仮説を推測するタスクである。
文献では、過去の観察や将来の観察と矛盾しない可能性のある仮説を分類・生成することで、この課題を解決するためにコミュニティがアプローチしている。
この問題に対処する最もよく知られているベンチマークは、aNLIとaNLG(α-NLIとα-NLGと発音する)である。
この報告では、この課題を解決しようとした方法論のいくつかをレビューし、ベースラインモデルを再実装し、現在のアプローチが抱える弱点を分析します。
コードと再実装された結果はこのリンクで確認できる。
関連論文リスト
- Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment [54.62926010621013]
我々は,大規模言語モデルの推論能力に対する新たな視点を提供するために,新しいタスクであるコード推論を導入する。
論理的推論の確立した形式に基づいて3つのメタベンチマークを要約し、8つの特定のベンチマークタスクにインスタンス化する。
本稿では,人間の複雑な問題解決手法に触発された新たな経路探索パイプラインを提案する。
論文 参考訳(メタデータ) (2025-02-17T10:39:58Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language Model (LLM) は論理的および数学的推論を行う際にも苦戦している。
本稿では、議論論に関する文献からの批判的質問の概念を利用し、特にトゥールミンの議論モデルに焦点を当てる。
これらの重要な質問を取り入れることで,LLMの推論能力が向上することを示す。
論文 参考訳(メタデータ) (2024-12-19T18:51:30Z) - A Survey of Low-shot Vision-Language Model Adaptation via Representer Theorem [38.84662767814454]
限られた訓練データの条件下で対処する主な課題は、パラメータ効率のよい方法で事前訓練された視覚言語モデルを微調整する方法である。
本稿では,既存の手法を統合化し,それらの性質を同定し,詳細な比較を支援するための統一的な計算フレームワークを提案する。
実演として、カーネルヒルベルト空間(RKHS)における表現子間のクラス間相関をモデル化し、既存の手法を拡張した。
論文 参考訳(メタデータ) (2024-10-15T15:22:30Z) - Evidence from counterfactual tasks supports emergent analogical reasoning in large language models [3.9189409002585562]
大規模な言語モデルでは、ゼロショット方式で幅広いテキストベースの類似問題を解くことができるという証拠を報告する。
最近の2つの注釈は、アルファベットの標準配列が任意に置換されるいわゆる反事実的タスクの証拠を引用して、これらの結果に異議を唱えている。
ここでは、これらの批判に回答し、本研究で使用した試験材料に関する誤解を明らかにし、言語モデルがこれらの新しい対実的タスク変種に一般化できることを示す。
論文 参考訳(メタデータ) (2024-04-14T21:51:02Z) - Mitigating Reversal Curse in Large Language Models via Semantic-aware Permutation Training [57.771940716189114]
我々は、大きな言語モデル(LLM)が「逆の呪い」に苦しむことを示す。
逆の呪いの根本原因は、訓練と推論の段階で異なる単語順にある。
この問題に対処するために,SPT(Semantic-Aware Permutation Training)を提案する。
論文 参考訳(メタデータ) (2024-03-01T18:55:20Z) - Faithfulness Tests for Natural Language Explanations [87.01093277918599]
ニューラルモデルの説明は、その予測のためのモデルの意思決定プロセスを明らかにすることを目的としている。
近年の研究では,サリエンシマップやファクトファクトファクトダクトなどの説明を行う手法が誤解を招く可能性があることが示されている。
本研究は,自然言語の説明の忠実さを評価する上での課題について考察する。
論文 参考訳(メタデータ) (2023-05-29T11:40:37Z) - Shortcomings of Question Answering Based Factuality Frameworks for Error
Localization [51.01957350348377]
質問応答(QA)に基づく事実性指標は、生成した要約の誤り範囲を正しく識別できないことを示す。
このようなローカライゼーションが不十分な理由として,QGモジュールが生成した質問は,非実数的な要約から誤りを継承することが多く,さらに下流モジュールに伝播する。
本実験は,より強力なQAモデルとQGモデルでのみ修正できないQAフレームワークを用いた局所化に関する根本的な問題が存在することを確定的に示す。
論文 参考訳(メタデータ) (2022-10-13T05:23:38Z) - L2R2: Leveraging Ranking for Abductive Reasoning [65.40375542988416]
学習システムの帰納的推論能力を評価するために,帰納的自然言語推論タスク(alpha$NLI)を提案する。
新たな$L2R2$アプローチは、Learning-to-rankフレームワークの下で提案されている。
ARTデータセットの実験は、公開リーダボードの最先端に到達します。
論文 参考訳(メタデータ) (2020-05-22T15:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。