A Survey on Table Question Answering: Recent Advances
- URL: http://arxiv.org/abs/2207.05270v1
- Date: Tue, 12 Jul 2022 02:44:40 GMT
- Title: A Survey on Table Question Answering: Recent Advances
- Authors: Nengzheng Jin, Joanna Siebert, Dongfang Li, Qingcai Chen
- Abstract summary: Table Question Answering (Table QA) refers to providing precise answers from tables to answer a user's question.
We classify existing methods for table QA into five categories according to their techniques.
We identify and outline several key challenges and discuss the potential future directions of table QA.
- Score: 10.874446530132087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table Question Answering (Table QA) refers to providing precise answers from
tables to answer a user's question. In recent years, there have been a lot of
works on table QA, but there is a lack of comprehensive surveys on this
research topic. Hence, we aim to provide an overview of available datasets and
representative methods in table QA. We classify existing methods for table QA
into five categories according to their techniques, which include
semantic-parsing-based, generative, extractive, matching-based, and
retriever-reader-based methods. Moreover, as table QA is still a challenging
task for existing methods, we also identify and outline several key challenges
and discuss the potential future directions of table QA.
Related papers
- TTQA-RS- A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization [3.531533402602335]
Multi-hop table-text QA requires multiple hops between the table and text.
Our model uses an enhanced retriever for table-text information retrieval.
Our experiments demonstrate the potential of prompt-based approaches.
arXiv Detail & Related papers (2024-06-20T20:55:38Z) - KET-QA: A Dataset for Knowledge Enhanced Table Question Answering [63.56707527868466]
We propose to use a knowledge base (KB) as the external knowledge source for TableQA.
Every question requires the integration of information from both the table and the sub-graph to be answered.
We design a retriever-reasoner structured pipeline model to extract pertinent information from the vast knowledge sub-graph.
arXiv Detail & Related papers (2024-05-13T18:26:32Z) - Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval [52.592071689901196]
We introduce a method that uncovers useful join relations for any query and database during table retrieval.
Our method outperforms the state-of-the-art approaches for table retrieval by up to 9.3% in F1 score and for end-to-end QA by up to 5.4% in accuracy.
arXiv Detail & Related papers (2024-04-15T15:55:01Z) - MFORT-QA: Multi-hop Few-shot Open Rich Table Question Answering [3.1651118728570635]
In today's fast-paced industry, professionals face the challenge of summarizing a large number of documents and extracting vital information from them on a daily basis.
To address this challenge, the approach of Table Question Answering (QA) has been developed to extract the relevant information.
Recent advancements in Large Language Models (LLMs) have opened up new possibilities for extracting information from tabular data using prompts.
arXiv Detail & Related papers (2024-03-28T03:14:18Z) - RobuT: A Systematic Study of Table QA Robustness Against Human-Annotated
Adversarial Perturbations [13.900589860309488]
RobuT builds upon existing Table QA datasets (WTQ, Wiki-Weak, and SQA)
Our results indicate that both state-of-the-art Table QA models and large language models (e.g., GPT-3) with few-shot learning falter in these adversarial sets.
We propose to address this problem by using large language models to generate adversarial examples to enhance training.
arXiv Detail & Related papers (2023-06-25T19:23:21Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
Real-world queries are complex in nature, often over multiple tables in a relational database or web page.
Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers.
arXiv Detail & Related papers (2023-05-22T08:25:15Z) - PACIFIC: Towards Proactive Conversational Question Answering over
Tabular and Textual Data in Finance [96.06505049126345]
We present a new dataset, named PACIFIC. Compared with existing CQA datasets, PACIFIC exhibits three key features: (i) proactivity, (ii) numerical reasoning, and (iii) hybrid context of tables and text.
A new task is defined accordingly to study Proactive Conversational Question Answering (PCQA), which combines clarification question generation and CQA.
UniPCQA performs multi-task learning over all sub-tasks in PCQA and incorporates a simple ensemble strategy to alleviate the error propagation issue in the multi-task learning by cross-validating top-$k$ sampled Seq2Seq
arXiv Detail & Related papers (2022-10-17T08:06:56Z) - CLTR: An End-to-End, Transformer-Based System for Cell Level Table
Retrieval and Table Question Answering [8.389189333083513]
We present the first end-to-end, transformer-based table question answering (QA) system.
It takes natural language questions and massive table corpus as inputs to retrieve the most relevant tables and locate the correct table cells to answer the question.
We introduce two new open-domain benchmarks, E2E_WTQ and E2E_GNQ, consisting of 2,005 natural language questions over 76,242 tables.
arXiv Detail & Related papers (2021-06-08T15:22:10Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark.
We set up multi-choice and open-ended QA tasks targeting causal action reasoning, temporal action reasoning, and common scene comprehension.
We find that top-performing methods excel at shallow scene descriptions but are weak in causal and temporal action reasoning.
arXiv Detail & Related papers (2021-05-18T04:56:46Z) - FeTaQA: Free-form Table Question Answering [33.018256483762386]
We introduce FeTaQA, a new dataset with 10K Wikipedia-based table, question, free-form answer, supporting table cells pairs.
FeTaQA yields a more challenging table question answering setting because it requires generating free-form text answers after retrieval, inference, and integration of multiple discontinuous facts from a structured knowledge source.
arXiv Detail & Related papers (2021-04-01T09:59:40Z) - Open Question Answering over Tables and Text [55.8412170633547]
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question.
Most open QA systems have considered only retrieving information from unstructured text.
We present a new large-scale dataset Open Table-and-Text Question Answering (OTT-QA) to evaluate performance on this task.
arXiv Detail & Related papers (2020-10-20T16:48:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.