論文の概要: Category-Level 6D Object Pose and Size Estimation using Self-Supervised
Deep Prior Deformation Networks
- arxiv url: http://arxiv.org/abs/2207.05444v1
- Date: Tue, 12 Jul 2022 10:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 14:34:35.409027
- Title: Category-Level 6D Object Pose and Size Estimation using Self-Supervised
Deep Prior Deformation Networks
- Title(参考訳): 自己監督型深部事前変形ネットワークを用いたカテゴリーレベル6次元オブジェクトポースとサイズ推定
- Authors: Jiehong Lin, Zewei Wei, Changxing Ding, Kui Jia
- Abstract要約: オブジェクトのインスタンスとそのセマンティクスを3D空間で正確にアノテートすることは困難であり、これらのタスクには合成データが広く使われている。
本研究では,Sim2Realのタスク設定において,カテゴリレベルの6Dオブジェクトのポーズとサイズ推定のための教師なしドメイン適応を実現することを目的としている。
本稿では,新しいCAMERA Deep Prior deformation Network(DPDN)上に構築した手法を提案する。
- 参考スコア(独自算出の注目度): 39.6823489555449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is difficult to precisely annotate object instances and their semantics in
3D space, and as such, synthetic data are extensively used for these tasks,
e.g., category-level 6D object pose and size estimation. However, the easy
annotations in synthetic domains bring the downside effect of synthetic-to-real
(Sim2Real) domain gap. In this work, we aim to address this issue in the task
setting of Sim2Real, unsupervised domain adaptation for category-level 6D
object pose and size estimation. We propose a method that is built upon a novel
Deep Prior Deformation Network, shortened as DPDN. DPDN learns to deform
features of categorical shape priors to match those of object observations, and
is thus able to establish deep correspondence in the feature space for direct
regression of object poses and sizes. To reduce the Sim2Real domain gap, we
formulate a novel self-supervised objective upon DPDN via consistency learning;
more specifically, we apply two rigid transformations to each object
observation in parallel, and feed them into DPDN respectively to yield dual
sets of predictions; on top of the parallel learning, an inter-consistency term
is employed to keep cross consistency between dual predictions for improving
the sensitivity of DPDN to pose changes, while individual intra-consistency
ones are used to enforce self-adaptation within each learning itself. We train
DPDN on both training sets of the synthetic CAMERA25 and real-world REAL275
datasets; our results outperform the existing methods on REAL275 test set under
both the unsupervised and supervised settings. Ablation studies also verify the
efficacy of our designs. Our code is released publicly at
https://github.com/JiehongLin/Self-DPDN.
- Abstract(参考訳): オブジェクトのインスタンスとそのセマンティクスを3D空間で正確にアノテートすることは困難であり、例えばカテゴリレベルの6Dオブジェクトのポーズやサイズ推定など、これらのタスクに合成データが広く使われている。
しかし、合成ドメインでの簡単なアノテーションは、合成から現実への(Sim2Real)ドメインギャップのマイナス効果をもたらす。
本研究では,Sim2Realのタスク設定において,カテゴリレベルの6Dオブジェクトのポーズとサイズ推定のための教師なしドメイン適応を実現することを目的としている。
DPDNとして短縮された新しいDeep Prior deformation Network上に構築する手法を提案する。
DPDNは、対象の観察と一致するようにカテゴリ形状の特徴を事前に変形させることを学び、それによって、対象のポーズと大きさの直接回帰のための特徴空間に深い対応を確立することができる。
To reduce the Sim2Real domain gap, we formulate a novel self-supervised objective upon DPDN via consistency learning; more specifically, we apply two rigid transformations to each object observation in parallel, and feed them into DPDN respectively to yield dual sets of predictions; on top of the parallel learning, an inter-consistency term is employed to keep cross consistency between dual predictions for improving the sensitivity of DPDN to pose changes, while individual intra-consistency ones are used to enforce self-adaptation within each learning itself.
我々は、合成CAMERA25と実世界のREAL275データセットの両方のトレーニングセットでPDNをトレーニングし、教師なしと教師なしの両方の設定下でのREAL275テストセットの既存の手法よりも優れた結果を得た。
アブレーション研究は我々の設計の有効性も検証する。
私たちのコードはhttps://github.com/JiehongLin/Self-DPDN.comで公開されています。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
室内3次元物体検出における非教師なし領域適応のための新しいフレームワークを提案する。
合成データセット3D-FRONTから実世界のデータセットScanNetV2とSUN RGB-Dへの適応結果は、ソースオンリーベースラインよりも9.7%、9.1%のmAP25が顕著に改善されていることを示している。
論文 参考訳(メタデータ) (2024-06-17T08:18:41Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
シングルビューRGB-D画像からの3Dオブジェクトの汎用化は依然として難しい課題である。
本稿では,暗黙の場学習と点拡散を調和させる新しい手法IPoDを提案する。
CO3D-v2データセットによる実験では、IPoDの優位性が確認され、Fスコアは7.8%、チャンファー距離は28.6%向上した。
論文 参考訳(メタデータ) (2024-03-30T07:17:37Z) - Geometry-Aware Network for Domain Adaptive Semantic Segmentation [64.00345743710653]
本稿では,ドメイン間のギャップを小さくするために,ドメイン適応のための幾何学的ネットワーク(GANDA)を提案する。
我々は、RGB-D画像から生成された点雲上の3Dトポロジを利用して、対象領域における座標色歪みと擬似ラベルの微細化を行う。
我々のモデルは,GTA5->CityscapesとSynTHIA->Cityscapesの最先端技術より優れている。
論文 参考訳(メタデータ) (2022-12-02T00:48:44Z) - DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation [43.963630959349885]
本稿では,DCL-Netとして短縮された直接6次元オブジェクトポーズ推定のためのディープ対応学習ネットワークを提案する。
DCL-Netは,YCB-Video,LineMOD,Oclussion-LineMODを含む3つのベンチマークデータセットにおいて,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:04:40Z) - Unseen Object Instance Segmentation with Fully Test-time RGB-D
Embeddings Adaptation [14.258456366985444]
最近では、大規模な合成データのRGB-D機能を活用し、実世界のシナリオにモデルを適用するのが一般的である。
本稿では,Sim2Realドメイン間の適応プロセスを再強調する。
本稿では,BatchNorm層のパラメータに基づいて,完全テスト時間RGB-D埋め込み適応(FTEA)を行うフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-21T02:35:20Z) - Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose
Estimation [63.199549837604444]
3次元ポーズ推定アプローチは、強い(2D/3Dポーズ)または弱い(複数ビューまたは深さ)ペアによる監督の異なる形態を利用する。
我々は3Dポーズ学習を,ラベル付きソースドメインから完全に損なわれないターゲットへのタスク知識の転送を目的とした,自己指導型適応問題として捉えた。
我々は、異なる自己適応設定を評価し、標準ベンチマークで最先端の3Dポーズ推定性能を示す。
論文 参考訳(メタデータ) (2022-04-05T03:52:57Z) - Introducing Pose Consistency and Warp-Alignment for Self-Supervised 6D
Object Pose Estimation in Color Images [38.9238085806793]
オブジェクトの6Dポーズを推定する最も成功したアプローチは、現実世界の画像で注釈付きのポーズで学習を監督することによって、ニューラルネットワークを訓練する。
既存のニューラルネットワークベースのアプローチの上に適用可能な2段階の6Dオブジェクトポーズ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-27T11:53:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。