Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning
- URL: http://arxiv.org/abs/2207.05556v1
- Date: Mon, 11 Jul 2022 01:23:36 GMT
- Title: Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning
- Authors: Kunni Lin, Jiawei Peng, Chao Xu, Feng Long Gu and Zhenggang Lan
- Abstract summary: We apply the supervised machine learning (ML) approach to realize the trajectory-based nonadiabatic dynamics.
The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models.
- Score: 4.629634111796585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The supervised machine learning (ML) approach is applied to realize the
trajectory-based nonadiabatic dynamics within the framework of the symmetrical
quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian
(MM-SQC). After the construction of the long short-term memory recurrent neural
network (LSTM-RNN) model, it is used to perform the entire trajectory
evolutions from initial sampling conditions. The proposed idea is proven to be
reliable and accurate in the simulations of the dynamics of several
site-exciton electron-phonon coupling models, which cover two-site and
three-site systems with biased and unbiased energy levels, as well as include a
few or many phonon modes. The LSTM-RNN approach also shows the powerful ability
to obtain the accurate and stable results for the long-time evolutions. It
indicates that the LSTM-RNN model perfectly captures of dynamical correction
information in the trajectory evolution in the MM-SQC dynamics. Our work
provides the possibility to employ the ML methods in the simulation of the
trajectory-based nonadiabatic dynamic of complex systems with a large number of
degrees of freedoms.
Related papers
- A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics [0.0]
We show that a deep artificial neural network can predict the long-time population dynamics of a quantum system coupled to a dissipative environment.
Our model is more accurate than classical forecasting models, such as recurrent neural networks.
arXiv Detail & Related papers (2024-09-17T16:17:52Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
We develop an approach that balances these two objectives: the Gaussian Process Switching Linear Dynamical System (gpSLDS)
Our method builds on previous work modeling the latent state evolution via a differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs)
Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics.
arXiv Detail & Related papers (2024-07-19T15:32:15Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.
Three autoregressive models were compared: a convolutional autoencoder combined with a convolutional LSTM, a variational autoencoder (VAE) combined with a ConvLSTM and a hybrid model that combines proper decomposition (POD) with a LSTM (POD-DL)
While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others across both laminar and turbulent flow regimes.
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
The long short-term memory recurrent neural network (LSTM-RNN) models are used to simulate the long-time quantum dynamics.
This work builds an effective machine learning approach to simulate the dynamics evolution of open quantum systems.
arXiv Detail & Related papers (2022-05-07T08:53:55Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Learning Stochastic Dynamics with Statistics-Informed Neural Network [0.4297070083645049]
We introduce a machine-learning framework named statistics-informed neural network (SINN) for learning dynamics from data.
We devise mechanisms for training the neural network model to reproduce the correct emphstatistical behavior of a target process.
We show that the obtained reduced-order model can be trained on temporally coarse-grained data and hence is well suited for rare-event simulations.
arXiv Detail & Related papers (2022-02-24T18:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.