Benchmarking quantum error-correcting codes on quasi-linear and
central-spin processors
- URL: http://arxiv.org/abs/2207.05568v2
- Date: Wed, 13 Jul 2022 12:02:21 GMT
- Title: Benchmarking quantum error-correcting codes on quasi-linear and
central-spin processors
- Authors: Regina Finsterhoelzl and Guido Burkard
- Abstract summary: We evaluate the performance of small error-correcting codes on a superconducting processor based on transmon qubits and a spintronic quantum register consisting of a nitrogen-vacancy center in diamond.
For codes involving multi-qubit controlled operations, the central-spin connectivity of the color centers enables lower error rates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We evaluate the performance of small error-correcting codes, which we tailor
to hardware platforms of very different connectivity and coherence: on a
superconducting processor based on transmon qubits and a spintronic quantum
register consisting of a nitrogen-vacancy center in diamond. Taking the
hardware-specific errors and connectivity into account, we investigate the
dependence of the resulting logical error rate on the platform features such as
the native gates, native connectivity, gate times, and coherence times. Using a
standard error model parameterized for the given hardware, we simulate the
performance and benchmark these predictions with experimental results when
running the code on the superconducting quantum device. The results indicate
that for small codes, the quasi-linear layout of the superconducting device is
advantageous. Yet, for codes involving multi-qubit controlled operations, the
central-spin connectivity of the color centers enables lower error rates.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are desirable for fault-tolerant quantum computing.
We show how these codes can be integrated in two-dimensional static neutral atom qubit architectures with open boundaries.
arXiv Detail & Related papers (2024-04-19T17:14:03Z) - Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning [1.1891349121931318]
We propose and explore reinforcement learning to automatically discover compact and hardware-adapted fault-tolerant quantum circuits.
We show that in the task of fault-tolerant logical state preparation, RL discovers circuits with fewer gates and ancillary qubits than published results without and with hardware constraints of up to 15 physical qubits.
arXiv Detail & Related papers (2024-02-27T18:55:13Z) - Hardware optimized parity check gates for superconducting surface codes [0.0]
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps.
We analyze an unconventional surface code based on multi-body interactions between superconducting transmon qubits.
Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs.
arXiv Detail & Related papers (2022-11-11T18:00:30Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Fault-tolerant operation of a logical qubit in a diamond quantum
processor [0.21670084965090575]
We demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond.
Our realization of fault-tolerant protocols on the logical-qubit level is a key step towards large-scale quantum information processing.
arXiv Detail & Related papers (2021-08-03T17:39:25Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Simulation of the five-qubit quantum error correction code on
superconducting qubits [0.0]
We propose a circuit based on the minimal distance-3 QEC code, which requires only 5 data qubits and 5 ancilla qubits.
Thanks to its smaller footprint, the proposed code has a lower logical error rate than Surface-17 for similar physical error rates.
arXiv Detail & Related papers (2021-07-14T05:29:59Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Hardware-efficient error-correcting codes for large nuclear spins [62.997667081978825]
We present a hardware-efficient quantum protocol that corrects phase flips of a nuclear spin using explicit experimentally feasible operations.
Results provide a realizable blueprint for a corrected spin-based qubit.
arXiv Detail & Related papers (2021-03-15T17:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.