Simulation of the five-qubit quantum error correction code on
superconducting qubits
- URL: http://arxiv.org/abs/2107.06491v3
- Date: Tue, 14 Dec 2021 09:57:40 GMT
- Title: Simulation of the five-qubit quantum error correction code on
superconducting qubits
- Authors: I. A. Simakov, I. S. Besedin and A. V. Ustinov
- Abstract summary: We propose a circuit based on the minimal distance-3 QEC code, which requires only 5 data qubits and 5 ancilla qubits.
Thanks to its smaller footprint, the proposed code has a lower logical error rate than Surface-17 for similar physical error rates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Experimental realization of stabilizer-based quantum error correction (QEC)
codes that would yield superior logical qubit performance is one of the
formidable task for state-of-the-art quantum processors. A major obstacle
towards realizing this goal is the large footprint of QEC codes, even those
with a small distance. We propose a circuit based on the minimal distance-3 QEC
code, which requires only 5 data qubits and 5 ancilla qubits, connected in a
ring with iSWAP gates implemented between neighboring qubits. Using a
density-matrix simulation, we show that, thanks to its smaller footprint, the
proposed code has a lower logical error rate than Surface-17 for similar
physical error rates. We also estimate the performance of a neural
network-based error decoder, which can be trained to accommodate the error
statistics of a specific quantum processor by training on experimental data.
Related papers
- qec_code_sim: An open-source Python framework for estimating the effectiveness of quantum-error correcting codes on superconducting qubits [0.21847754147782888]
We present qec_code_sim, an open-source, lightweight Python framework for studying the performance of small quantum error correcting codes.
qec_code_sim requires minimal software dependencies and prioritizes ease of use, ease of change, and pedagogy over execution speed.
arXiv Detail & Related papers (2024-02-09T19:21:26Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Low-overhead quantum error correction codes with a cyclic topology [0.0]
We propose a resource-efficient scaling of a five-qubit perfect code with cyclic stabilizers for small distances on the ring architecture.
We show an approach to construct the quantum circuit of a correction code with ancillas entangled with non-neighboring data qubits.
arXiv Detail & Related papers (2022-11-06T12:22:23Z) - NEO-QEC: Neural Network Enhanced Online Superconducting Decoder for
Surface Codes [2.2749157557381245]
We propose an NN-based accurate, fast, and low-power decoder capable of decoding SCs and lattice surgery (LS) operations with measurement errors on ancillary qubits.
We evaluate the decoder performance by a quantum error simulator for the single logical qubit protection and the minimum operation of LS with code up to 13.
arXiv Detail & Related papers (2022-08-11T11:37:09Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Fault-tolerant operation of a logical qubit in a diamond quantum
processor [0.21670084965090575]
We demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond.
Our realization of fault-tolerant protocols on the logical-qubit level is a key step towards large-scale quantum information processing.
arXiv Detail & Related papers (2021-08-03T17:39:25Z) - QECOOL: On-Line Quantum Error Correction with a Superconducting Decoder
for Surface Code [2.2749157557381245]
Surface code (SC) associated with its decoding algorithm is one of the most promising quantum error correction (QEC) methods.
In this paper, we propose an online-QEC algorithm and its hardware implementation with superconducting digital circuits.
Our decoder is simulated on a quantum error simulator for code 5 to 13 and achieves a 1.0% accuracy threshold.
arXiv Detail & Related papers (2021-03-26T01:51:15Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.