Zero-shot Cross-lingual Transfer is Under-specified Optimization
- URL: http://arxiv.org/abs/2207.05666v1
- Date: Tue, 12 Jul 2022 16:49:28 GMT
- Title: Zero-shot Cross-lingual Transfer is Under-specified Optimization
- Authors: Shijie Wu, Benjamin Van Durme, Mark Dredze
- Abstract summary: We show that any linear-interpolated model between the source language monolingual model and source + target bilingual model has equally low source language generalization error.
We also show that zero-shot solution lies in non-flat region of target language error generalization surface, causing the high variance.
- Score: 49.3779328255767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained multilingual encoders enable zero-shot cross-lingual transfer, but
often produce unreliable models that exhibit high performance variance on the
target language. We postulate that this high variance results from zero-shot
cross-lingual transfer solving an under-specified optimization problem. We show
that any linear-interpolated model between the source language monolingual
model and source + target bilingual model has equally low source language
generalization error, yet the target language generalization error reduces
smoothly and linearly as we move from the monolingual to bilingual model,
suggesting that the model struggles to identify good solutions for both source
and target languages using the source language alone. Additionally, we show
that zero-shot solution lies in non-flat region of target language error
generalization surface, causing the high variance.
Related papers
- Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - DiTTO: A Feature Representation Imitation Approach for Improving
Cross-Lingual Transfer [15.062937537799005]
languages as domains for improving zero-shot transfer.
We show that our approach, DiTTO, significantly outperforms the standard zero-shot fine-tuning method.
Our model enables better cross-lingual transfer than standard fine-tuning methods, even in the few-shot setting.
arXiv Detail & Related papers (2023-03-04T08:42:50Z) - Efficient Language Model Training through Cross-Lingual and Progressive
Transfer Learning [0.7612676127275795]
Most Transformer language models are pretrained on English text.
As model sizes grow, the performance gap between English and other languages increases even further.
We introduce a cross-lingual and progressive transfer learning approach, called CLP-Transfer.
arXiv Detail & Related papers (2023-01-23T18:56:12Z) - Model and Data Transfer for Cross-Lingual Sequence Labelling in
Zero-Resource Settings [10.871587311621974]
We experimentally demonstrate that high capacity multilingual language models applied in a zero-shot setting consistently outperform data-based cross-lingual transfer approaches.
A detailed analysis of our results suggests that this might be due to important differences in language use.
Our results also indicate that data-based cross-lingual transfer approaches remain a competitive option when high-capacity multilingual language models are not available.
arXiv Detail & Related papers (2022-10-23T05:37:35Z) - Improving the Cross-Lingual Generalisation in Visual Question Answering [40.86774711775718]
multilingual vision-language pretrained models show poor cross-lingual generalisation when applied to non-English data.
In this work, we explore the poor performance of these models on a zero-shot cross-lingual visual question answering (VQA) task.
We improve cross-lingual transfer with three strategies: (1) we introduce a linguistic prior objective to augment the cross-entropy loss with a similarity-based loss to guide the model during training, (2) we learn a task-specific subnetwork that improves cross-lingual generalisation and reduces variance without model modification, and (3) we augment training examples using synthetic code
arXiv Detail & Related papers (2022-09-07T08:07:43Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z) - Learning to Learn Morphological Inflection for Resource-Poor Languages [105.11499402984482]
We propose to cast the task of morphological inflection - mapping a lemma to an indicated inflected form - for resource-poor languages as a meta-learning problem.
Treating each language as a separate task, we use data from high-resource source languages to learn a set of model parameters.
Experiments with two model architectures on 29 target languages from 3 families show that our suggested approach outperforms all baselines.
arXiv Detail & Related papers (2020-04-28T05:13:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.