Learning to Learn Morphological Inflection for Resource-Poor Languages
- URL: http://arxiv.org/abs/2004.13304v1
- Date: Tue, 28 Apr 2020 05:13:17 GMT
- Title: Learning to Learn Morphological Inflection for Resource-Poor Languages
- Authors: Katharina Kann, Samuel R. Bowman, Kyunghyun Cho
- Abstract summary: We propose to cast the task of morphological inflection - mapping a lemma to an indicated inflected form - for resource-poor languages as a meta-learning problem.
Treating each language as a separate task, we use data from high-resource source languages to learn a set of model parameters.
Experiments with two model architectures on 29 target languages from 3 families show that our suggested approach outperforms all baselines.
- Score: 105.11499402984482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose to cast the task of morphological inflection - mapping a lemma to
an indicated inflected form - for resource-poor languages as a meta-learning
problem. Treating each language as a separate task, we use data from
high-resource source languages to learn a set of model parameters that can
serve as a strong initialization point for fine-tuning on a resource-poor
target language. Experiments with two model architectures on 29 target
languages from 3 families show that our suggested approach outperforms all
baselines. In particular, it obtains a 31.7% higher absolute accuracy than a
previously proposed cross-lingual transfer model and outperforms the previous
state of the art by 1.7% absolute accuracy on average over languages.
Related papers
- Cross-lingual transfer of multilingual models on low resource African Languages [0.20793001310272596]
monolingual models, trained on a single language, may better capture the nuances of the target language.
AfriBERT achieved the highest cross-lingual accuracy of 88.3% after fine-tuning.
BiGRU emerged as the best-performing neural model with 83.3% accuracy.
arXiv Detail & Related papers (2024-09-17T08:05:40Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
We focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets.
We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets.
arXiv Detail & Related papers (2024-02-03T10:41:05Z) - An Open Dataset and Model for Language Identification [84.15194457400253]
We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033 across 201 languages.
We make both the model and the dataset available to the research community.
arXiv Detail & Related papers (2023-05-23T08:43:42Z) - Improving the Cross-Lingual Generalisation in Visual Question Answering [40.86774711775718]
multilingual vision-language pretrained models show poor cross-lingual generalisation when applied to non-English data.
In this work, we explore the poor performance of these models on a zero-shot cross-lingual visual question answering (VQA) task.
We improve cross-lingual transfer with three strategies: (1) we introduce a linguistic prior objective to augment the cross-entropy loss with a similarity-based loss to guide the model during training, (2) we learn a task-specific subnetwork that improves cross-lingual generalisation and reduces variance without model modification, and (3) we augment training examples using synthetic code
arXiv Detail & Related papers (2022-09-07T08:07:43Z) - Zero-shot Cross-lingual Transfer is Under-specified Optimization [49.3779328255767]
We show that any linear-interpolated model between the source language monolingual model and source + target bilingual model has equally low source language generalization error.
We also show that zero-shot solution lies in non-flat region of target language error generalization surface, causing the high variance.
arXiv Detail & Related papers (2022-07-12T16:49:28Z) - Por Qu\'e N\~ao Utiliser Alla Spr{\aa}k? Mixed Training with Gradient
Optimization in Few-Shot Cross-Lingual Transfer [2.7213511121305465]
We propose a one-step mixed training method that trains on both source and target data.
We use one model to handle all target languages simultaneously to avoid excessively language-specific models.
Our proposed method achieves state-of-the-art performance on all tasks and outperforms target-adapting by a large margin.
arXiv Detail & Related papers (2022-04-29T04:05:02Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
Contextualized word representations from pretrained multilingual language models have become the de facto standard for addressing natural language tasks.
For languages rarely or never seen by these models, directly using such models often results in suboptimal representation or use of data.
arXiv Detail & Related papers (2021-06-16T18:13:55Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.