Catalysis of entanglement and other quantum resources
- URL: http://arxiv.org/abs/2207.05694v3
- Date: Mon, 15 Apr 2024 13:52:41 GMT
- Title: Catalysis of entanglement and other quantum resources
- Authors: Chandan Datta, Tulja Varun Kondra, Marek Miller, Alexander Streltsov,
- Abstract summary: Instead of chemical reactions, quantum enhances our ability to convert quantum states into each other under physical constraints.
This article reviews the most recent developments in quantum preservation and gives a historical overview of this research direction.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In chemistry, a catalyst is a substance which enables a chemical reaction or increases its rate, while remaining unchanged in the process. Instead of chemical reactions, quantum catalysis enhances our ability to convert quantum states into each other under physical constraints. The nature of the constraints depends on the problem under study and can arise, e.g., from energy preservation. This article reviews the most recent developments in quantum catalysis and gives a historical overview of this research direction. We focus on the catalysis of quantum entanglement and coherence, and also discuss this phenomenon in quantum thermodynamics and general quantum resource theories. We review applications of quantum catalysis and also discuss the recent efforts on universal catalysis, where the quantum state of the catalyst does not depend on the states to be transformed. Catalytic embezzling is also considered, a phenomenon that occurs if the catalyst's state can change in the transition.
Related papers
- Finite-size catalysis in quantum resource theories [1.1510009152620668]
Quantum, the ability to enable previously impossible transformations by using auxiliary systems without degrading them, has emerged as a powerful tool in various resource theories.
We show how one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
Notably, we discover a fascinating phenomenon of catalytic resonance: tailoring the catalysts's state, one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
arXiv Detail & Related papers (2024-05-14T19:08:55Z) - Catalysis in Quantum Information Theory [0.0]
Catalysts open up new reaction pathways that can speed up chemical reactions while not consuming the catalyst.
A similar phenomenon has been discovered in quantum information science, where physical transformations become possible by utilizing a quantum degree of freedom.
arXiv Detail & Related papers (2023-06-01T15:28:11Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - No-go theorem for entanglement distillation using catalysis [49.24817625059456]
We show that catalytic transformations can never allow for the distillation of entanglement from a bound entangled state.
This precludes the possibility that entanglement theoryally reversible based operations under even permissive choices.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correlational Resource Theory of Catalytic Quantum Randomness under
Conservation Law [0.0]
We establish a theory of one-shot catalytic randomness in which uncorrelatedness is consumed in randomness.
We show how much degeneracy of quantum state can boost the catalytic entropy beyond its ordinary entropy.
We apply this theory to systems under conservation law that forbids superposition of certain quantum states.
arXiv Detail & Related papers (2021-04-01T07:11:49Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - All states are universal catalysts in quantum thermodynamics [0.0]
We show that in resource theories governed by majorization all resourceful states catalysts are for all allowed transformations.
In quantum thermodynamics this means that the so-called "second laws of thermodynamics" do not require a fine-tuned catalyst but rather any state, given sufficiently many copies, can serve as a useful catalyst.
arXiv Detail & Related papers (2020-06-29T18:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.