論文の概要: RelaxLoss: Defending Membership Inference Attacks without Losing Utility
- arxiv url: http://arxiv.org/abs/2207.05801v1
- Date: Tue, 12 Jul 2022 19:34:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 15:30:29.602858
- Title: RelaxLoss: Defending Membership Inference Attacks without Losing Utility
- Title(参考訳): relaxloss: ユーティリティを失うことなくメンバシップ推論攻撃を防御する
- Authors: Dingfan Chen, Ning Yu, Mario Fritz
- Abstract要約: より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
- 参考スコア(独自算出の注目度): 68.48117818874155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a long-term threat to the privacy of training data, membership inference
attacks (MIAs) emerge ubiquitously in machine learning models. Existing works
evidence strong connection between the distinguishability of the training and
testing loss distributions and the model's vulnerability to MIAs. Motivated by
existing results, we propose a novel training framework based on a relaxed loss
with a more achievable learning target, which leads to narrowed generalization
gap and reduced privacy leakage. RelaxLoss is applicable to any classification
model with added benefits of easy implementation and negligible overhead.
Through extensive evaluations on five datasets with diverse modalities (images,
medical data, transaction records), our approach consistently outperforms
state-of-the-art defense mechanisms in terms of resilience against MIAs as well
as model utility. Our defense is the first that can withstand a wide range of
attacks while preserving (or even improving) the target model's utility. Source
code is available at https://github.com/DingfanChen/RelaxLoss
- Abstract(参考訳): トレーニングデータのプライバシに対する長期的な脅威として、メンバシップ推論攻撃(MIA)が機械学習モデルに広範に現れる。
既存の研究は、トレーニングとテストの損失分布の区別可能性とMIAに対するモデルの脆弱性との間に強い関係があることを証明している。
既存の結果に触発されて、より達成可能な学習目標を持つ緩和された損失に基づく新たなトレーニングフレームワークを提案し、一般化ギャップの狭化とプライバシー漏洩の低減につながる。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
多様なモーダル性(画像、医療データ、トランザクションレコード)を持つ5つのデータセットに対する広範な評価を通じて、我々のアプローチはMIAに対するレジリエンスやモデルユーティリティの観点から、常に最先端の防御メカニズムを上回ります。
当社の防御は,ターゲットモデルの実用性を維持(あるいは改善)しながら,幅広い攻撃に耐えられる最初のものです。
ソースコードはhttps://github.com/DingfanChen/RelaxLossで入手できる。
関連論文リスト
- Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Practical Membership Inference Attacks Against Large-Scale Multi-Modal
Models: A Pilot Study [17.421886085918608]
メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングにデータポイントを使用したかどうかを推測することを目的としている。
これらの攻撃は、潜在的なプライバシー上の脆弱性を特定し、個人データの不正使用を検出するために使用できる。
本稿では,大規模マルチモーダルモデルに対する実用的なMIAの開発に向けて第一歩を踏み出す。
論文 参考訳(メタデータ) (2023-09-29T19:38:40Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
既存のモデル盗難防衛は、被害者の後部確率に偽りの摂動を加え、攻撃者を誤解させる。
本稿では,モデルステルス防衛のための新規かつ効果的なトレーニングフレームワークである分離誘導(InI)を提案する。
モデルの精度を損なうモデル予測に摂動を加えるのとは対照的に、我々はモデルを訓練して、盗むクエリに対して非形式的なアウトプットを生成する。
論文 参考訳(メタデータ) (2023-08-02T05:54:01Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - On the Evaluation of User Privacy in Deep Neural Networks using Timing
Side Channel [14.350301915592027]
我々は,Deep Learning (DL) の実装において,新たなデータ依存型タイミング側チャネルリーク(クラスリーク)を特定し,報告する。
ユーザ特権とハードラベルのブラックボックスアクセスを持つ敵が、クラスリークを悪用できる、実用的な推論時攻撃を実証する。
我々は,クラスリークを緩和する定時分岐操作を行うことにより,実装が容易な対策を開発する。
論文 参考訳(メタデータ) (2022-08-01T19:38:16Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。