Iterative Linear Quadratic Optimization for Nonlinear Control:
Differentiable Programming Algorithmic Templates
- URL: http://arxiv.org/abs/2207.06362v1
- Date: Wed, 13 Jul 2022 17:10:47 GMT
- Title: Iterative Linear Quadratic Optimization for Nonlinear Control:
Differentiable Programming Algorithmic Templates
- Authors: Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel, Zaid Harchaoui
- Abstract summary: We present the implementation of nonlinear control algorithms based on linear and quadratic approximations of the objective from a functional viewpoint.
We derive the computational complexities of all algorithms in a differentiable programming framework and present sufficient optimality conditions.
The algorithms are coded in a differentiable programming language in a publicly available package.
- Score: 9.711326718689495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the implementation of nonlinear control algorithms based on linear
and quadratic approximations of the objective from a functional viewpoint. We
present a gradient descent, a Gauss-Newton method, a Newton method,
differential dynamic programming approaches with linear quadratic or quadratic
approximations, various line-search strategies, and regularized variants of
these algorithms. We derive the computational complexities of all algorithms in
a differentiable programming framework and present sufficient optimality
conditions. We compare the algorithms on several benchmarks, such as autonomous
car racing using a bicycle model of a car. The algorithms are coded in a
differentiable programming language in a publicly available package.
Related papers
- Online Combinatorial Linear Optimization via a Frank-Wolfe-based
Metarounding Algorithm [0.589889361990138]
We propose a new metarounding algorithm under a natural assumption that a relax-based approximation algorithm exists for the class.
Our algorithm is much more efficient in both theoretical and practical aspects.
arXiv Detail & Related papers (2023-10-19T10:22:03Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - Online Learning Under A Separable Stochastic Approximation Framework [20.26530917721778]
We propose an online learning algorithm for a class of machine learning models under a separable approximation framework.
We show that the proposed algorithm produces more robust and test performance when compared to other popular learning algorithms.
arXiv Detail & Related papers (2023-05-12T13:53:03Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Improving the Efficiency of Gradient Descent Algorithms Applied to
Optimization Problems with Dynamical Constraints [3.3722008527102894]
We introduce two block coordinate descent algorithms for solving optimization problems with ordinary differential equations.
The algorithms do not need to implement direct or adjoint sensitivity analysis methods to evaluate loss function gradients.
arXiv Detail & Related papers (2022-08-26T18:26:50Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.