論文の概要: N-Grammer: Augmenting Transformers with latent n-grams
- arxiv url: http://arxiv.org/abs/2207.06366v1
- Date: Wed, 13 Jul 2022 17:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 12:26:31.134459
- Title: N-Grammer: Augmenting Transformers with latent n-grams
- Title(参考訳): N-Grammer: 潜時n-gramによるトランスフォーマーの拡張
- Authors: Aurko Roy, Rohan Anil, Guangda Lai, Benjamin Lee, Jeffrey Zhao,
Shuyuan Zhang, Shibo Wang, Ye Zhang, Shen Wu, Rigel Swavely, Tao (Alex) Yu,
Phuong Dao, Christopher Fifty, Zhifeng Chen, Yonghui Wu
- Abstract要約: 本稿では,テキストシーケンスの離散潜在表現から構築したn-gramでモデルを拡張することにより,統計言語モデリングの文献に触発されたトランスフォーマーアーキテクチャの簡易かつ効果的な変更を提案する。
我々は、C4データセットの言語モデリングにおけるN-GrammerモデルとSuperGLUEデータセットのテキスト分類を評価し、TransformerやPrimerといった強力なベースラインよりも優れていることを発見した。
- 参考スコア(独自算出の注目度): 35.39961549040385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer models have recently emerged as one of the foundational models in
natural language processing, and as a byproduct, there is significant recent
interest and investment in scaling these models. However, the training and
inference costs of these large Transformer language models are prohibitive,
thus necessitating more research in identifying more efficient variants. In
this work, we propose a simple yet effective modification to the Transformer
architecture inspired by the literature in statistical language modeling, by
augmenting the model with n-grams that are constructed from a discrete latent
representation of the text sequence. We evaluate our model, the N-Grammer on
language modeling on the C4 data-set as well as text classification on the
SuperGLUE data-set, and find that it outperforms several strong baselines such
as the Transformer and the Primer. We open-source our model for reproducibility
purposes in Jax.
- Abstract(参考訳): トランスフォーマーモデルは最近、自然言語処理の基礎モデルの一つとして登場しており、副産物として、これらのモデルのスケーリングに対する最近の大きな関心と投資がある。
しかし、これらの大きなトランスフォーマー言語モデルの訓練と推論のコストは禁止されており、より効率的な変種を特定するためのさらなる研究が必要となる。
本研究では,テキストシーケンスの離散潜在表現から構築したn-gramでモデルを拡張することにより,統計言語モデリングの文献に触発されたトランスフォーマーアーキテクチャの簡易かつ効果的な変更を提案する。
我々は、C4データセットの言語モデリングにおけるN-GrammerモデルとSuperGLUEデータセットのテキスト分類を評価し、TransformerやPrimerといった強力なベースラインよりも優れていることを示す。
私たちはJaxで再現性のためのモデルをオープンソースにしています。
関連論文リスト
- Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
一般化された状態空間モデルは、推論時間効率の観点からは有望であるが、入力コンテキストからのコピーを必要とするタスクのトランスフォーマーモデルと比較して限定的であることを示す。
論文 参考訳(メタデータ) (2024-02-01T21:44:11Z) - Extensive Evaluation of Transformer-based Architectures for Adverse Drug
Events Extraction [6.78974856327994]
逆イベント(ADE)抽出は、デジタル製薬における中核的なタスクの1つである。
我々は、非公式テキストを用いたADE抽出のための19のトランスフォーマーモデルを評価する。
分析の最後には、実験データから導出可能なテイクホームメッセージのリストを同定する。
論文 参考訳(メタデータ) (2023-06-08T15:25:24Z) - Learning to Grow Pretrained Models for Efficient Transformer Training [72.20676008625641]
そこでは、より小さなモデルのパラメータを線形にマッピングして、より大きなモデルを初期化する。
言語と視覚のトランスフォーマーをまたいだ実験では、学習した線形成長演算子(LiGO)が、スクラッチから最大50%の計算コストを節約できることが示されています。
論文 参考訳(メタデータ) (2023-03-02T05:21:18Z) - DiffusER: Discrete Diffusion via Edit-based Reconstruction [88.62707047517914]
DiffusERは、拡散モデルに基づくテキストの編集ベースの生成モデルである。
機械翻訳、要約、スタイル転送にまたがるいくつかのタスクにおいて、自動回帰モデルと競合する可能性がある。
また、標準的な自己回帰モデルに適さないような、他の種類の世代も実行することができる。
論文 参考訳(メタデータ) (2022-10-30T16:55:23Z) - Pre-Training a Graph Recurrent Network for Language Representation [34.4554387894105]
本稿では,言語モデルの事前学習のためのグラフリカレントネットワークについて考察し,各シーケンスのグラフ構造を局所的なトークンレベルの通信で構築する。
我々のモデルは、既存の注意に基づくモデルよりもコンテキスト化された特徴冗長性が少なく、より多様な出力を生成することができる。
論文 参考訳(メタデータ) (2022-09-08T14:12:15Z) - Transformer Grammars: Augmenting Transformer Language Models with
Syntactic Inductive Biases at Scale [31.293175512404172]
Transformer Grammarsは、Transformerの表現力、スケーラビリティ、強力なパフォーマンスを組み合わせたTransformer言語モデルのクラスです。
また, Transformer Grammars は, 構文に敏感な言語モデリング評価指標において, 各種の強力なベースラインを上回ります。
論文 参考訳(メタデータ) (2022-03-01T17:22:31Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
空白および語彙予測を分解し,ニューラルトランスデューサの因子化モデルを提案する。
この因子化は、音声認識のためのトランスデューサにスタンドアロン言語モデルの改善を移すことが期待できる。
提案した因子化ニューラルトランスデューサは、言語モデル適応にドメイン外テキストデータを使用する場合、15%から20%のWER改善が得られることを示す。
論文 参考訳(メタデータ) (2021-09-27T15:04:00Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
我々は、事前訓練されたフリーズトランスフォーマー言語モデルから文レベルのオートエンコーダを構築する。
我々は、文ボトルネックと1層修飾トランスフォーマーデコーダのみを訓練しながら、マスク付き言語モデリングの目的を生成的・認知的言語として適応する。
本研究では,テキスト類似性タスク,スタイル転送,単一文分類タスクにおける事前学習されたトランスフォーマーからの表現をGLUEベンチマークで抽出する手法よりも,大規模な事前学習モデルよりも少ないパラメータを用いて,より高品質な文表現を実現することを示す。
論文 参考訳(メタデータ) (2021-08-31T19:39:55Z) - Structural Guidance for Transformer Language Models [24.00537240110055]
本研究では,トランスフォーマー言語モデルにおける構造的ガイダンスが,より人間らしい体系的言語一般化につながるかどうかを考察する。
実験結果から、生成的構造的監督がより堅牢で人間らしい言語的一般化を誘導できるという確固たる証拠が示唆された。
論文 参考訳(メタデータ) (2021-07-30T23:14:51Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
トランスフォーマー層の構造を改良し,より効率的なアーキテクチャを実現する。
自己認識モジュールを補完する畳み込みモジュールを追加し、局所的およびグローバルな相互作用の学習を分離する。
得られたアーキテクチャを言語表現学習に適用し、異なるスケールのBERTモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-06-10T15:41:53Z) - Abstractive Text Summarization based on Language Model Conditioning and
Locality Modeling [4.525267347429154]
BERT言語モデルに基づいてTransformerベースのニューラルモデルをトレーニングする。
さらに,BERTウィンドウサイズよりも長いテキストのチャンクワイズ処理が可能なBERTウィンドウ方式を提案する。
我々のモデルの結果は、CNN/Daily Mailデータセットのベースラインと最先端モデルと比較される。
論文 参考訳(メタデータ) (2020-03-29T14:00:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。