ECG beat classification using machine learning and pre-trained
convolutional neural networks
- URL: http://arxiv.org/abs/2207.06408v1
- Date: Tue, 14 Jun 2022 17:23:51 GMT
- Title: ECG beat classification using machine learning and pre-trained
convolutional neural networks
- Authors: Neville D. Gai
- Abstract summary: The work presented classifies five different types of ECG arrhythmia based on AAMI EC57 standard.
Performance on the test set indicated higher overall accuracy (98.62%), as well as better performance in classifying each of the five waveforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electrocardiogram (ECG) is routinely used in hospitals to analyze
cardiovascular status and health of an individual. Abnormal heart rhythms can
be a precursor to more serious conditions including sudden cardiac death.
Classifying abnormal rhythms is a laborious process prone to error. Therefore,
tools that perform automated classification with high accuracy are highly
desirable. The work presented classifies five different types of ECG arrhythmia
based on AAMI EC57 standard and using the MIT-BIH data set. These include
non-ectopic (normal), supraventricular, ventricular, fusion, and unknown beat.
By appropriately transforming pre-processed ECG waveforms into a rich feature
space along with appropriate post-processing and utilizing deep convolutional
neural networks post fine-tuning and hyperparameter selection, it is shown that
highly accurate classification for the five waveform types can be obtained.
Performance on the test set indicated higher overall accuracy (98.62%), as well
as better performance in classifying each of the five waveforms than hitherto
reported in literature.
Related papers
- ECGformer: Leveraging transformer for ECG heartbeat arrhythmia
classification [0.0]
An arrhythmia, also known as a dysrhythmia, refers to an irregular heartbeat.
Deep learning has demonstrated exceptional capabilities in tackling various medical challenges.
We develop the ECGformer model for the classification of various arrhythmias present in electrocardiogram data.
arXiv Detail & Related papers (2024-01-06T06:14:48Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Optimal Transport based Data Augmentation for Heart Disease Diagnosis
and Prediction [16.7288675686184]
We propose a new method of data augmentation to solve the data imbalance problem within imbalanced ECG datasets.
By using Optimal Transport, we augment the ECG disease data from normal ECG beats to balance the data among different categories.
Our results demonstrate 1) the classification models' ability to make competitive predictions on five ECG categories; 2) improvements in accuracy and robustness reflecting the effectiveness of our data augmentation method.
arXiv Detail & Related papers (2022-01-25T03:49:28Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
We studied the synthetic ECG generation capability of 5 different models from the generative adversarial network (GAN) family.
The results show that all the tested models can to an extent successfully mass-generate acceptable heartbeats with high similarity in morphological features.
arXiv Detail & Related papers (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.