Optimal Transport based Data Augmentation for Heart Disease Diagnosis
and Prediction
- URL: http://arxiv.org/abs/2202.00567v1
- Date: Tue, 25 Jan 2022 03:49:28 GMT
- Title: Optimal Transport based Data Augmentation for Heart Disease Diagnosis
and Prediction
- Authors: Jielin Qiu, Jiacheng Zhu, Michael Rosenberg, Emerson Liu, Ding Zhao
- Abstract summary: We propose a new method of data augmentation to solve the data imbalance problem within imbalanced ECG datasets.
By using Optimal Transport, we augment the ECG disease data from normal ECG beats to balance the data among different categories.
Our results demonstrate 1) the classification models' ability to make competitive predictions on five ECG categories; 2) improvements in accuracy and robustness reflecting the effectiveness of our data augmentation method.
- Score: 16.7288675686184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on a new method of data augmentation to solve the
data imbalance problem within imbalanced ECG datasets to improve the robustness
and accuracy of heart disease detection. By using Optimal Transport, we augment
the ECG disease data from normal ECG beats to balance the data among different
categories. We build a Multi-Feature Transformer (MF-Transformer) as our
classification model, where different features are extracted from both time and
frequency domains to diagnose various heart conditions. Learning from 12-lead
ECG signals, our model is able to distinguish five categories of cardiac
conditions. Our results demonstrate 1) the classification models' ability to
make competitive predictions on five ECG categories; 2) improvements in
accuracy and robustness reflecting the effectiveness of our data augmentation
method.
Related papers
- Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study [43.28613210217385]
We employ and compare three state-of-the-art generative models to generate PCG data.
Our results demonstrate that the generated PCG data closely resembles the original datasets.
In our future work, we plan to incorporate this method into a data augmentation pipeline to synthesize abnormal PCG signals with heart murmurs.
arXiv Detail & Related papers (2024-12-17T18:07:40Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - HeartBEiT: Vision Transformer for Electrocardiogram Data Improves
Diagnostic Performance at Low Sample Sizes [28.88454028731653]
We create the first vision-based transformer model, HeartBEiT, for electrocardiogram waveform analysis.
We show that HeartBEiT has significantly higher performance at lower sample sizes compared to other models.
We also show that HeartBEiT improves explainability of diagnosis by highlighting biologically relevant regions of the EKG vs. standard CNNs.
arXiv Detail & Related papers (2022-12-13T16:39:21Z) - Leveraging Statistical Shape Priors in GAN-based ECG Synthesis [3.3482093430607267]
We propose a novel approach for ECG signal generation using Generative Adversarial Networks (GANs) and statistical ECG data modeling.
Our approach leverages prior knowledge about ECG dynamics to synthesize realistic signals, addressing the complex dynamics of ECG signals.
Our results demonstrate that our approach, which models temporal and amplitude variations of ECG signals as 2-D shapes, generates more realistic signals compared to state-of-the-art GAN based generation baselines.
arXiv Detail & Related papers (2022-10-22T18:06:11Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
We studied the synthetic ECG generation capability of 5 different models from the generative adversarial network (GAN) family.
The results show that all the tested models can to an extent successfully mass-generate acceptable heartbeats with high similarity in morphological features.
arXiv Detail & Related papers (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
Diagnosing pre-existing heart diseases early in life is important to prevent complications such as pulmonary hypertension, heart rhythm problems, blood clots, heart failure and sudden cardiac arrest.
To identify such diseases, phonocardiogram (PCG) and electrocardiogram (ECG) waveforms convey important information.
Here, we evaluate this hypothesis on a subset of the PhysioNet Challenge 2016 dataset which contains simultaneously acquired PCG and ECG recordings.
Our novel Dual-Convolutional Neural Network based approach uses transfer learning to tackle the problem of having limited amounts of simultaneous PCG and ECG data that is publicly available.
arXiv Detail & Related papers (2021-02-02T19:51:12Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.