論文の概要: Quantum Metropolis Solver: A Quantum Walks Approach to Optimization
Problems
- arxiv url: http://arxiv.org/abs/2207.06462v1
- Date: Wed, 13 Jul 2022 18:26:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-16 08:20:55.582591
- Title: Quantum Metropolis Solver: A Quantum Walks Approach to Optimization
Problems
- Title(参考訳): Quantum Metropolis Solver: 最適化問題に対する量子ウォークアプローチ
- Authors: Roberto Campos, Pablo A M Casares and M A Martin-Delgado
- Abstract要約: 本稿では,量子ウォークに基づくメトロポリス・ハスティングス量子アルゴリズムについて述べる。
私たちはこのアルゴリズムを使ってQuantum Solver(QMS)という量子ソフトウェアツールを構築します。
我々は,N-Queen問題を用いてQMSを検証することで,人工知能領域に容易に外挿可能な量子優位性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The efficient resolution of optimization problems is one of the key issues in
today's industry. This task relies mainly on classical algorithms that present
scalability problems and processing limitations. Quantum computing has emerged
to challenge these types of problems. In this paper, we focus on the
Metropolis-Hastings quantum algorithm that is based on quantum walks. We use
this algorithm to build a quantum software tool called Quantum Metropolis
Solver (QMS). We validate QMS with the N-Queen problem to show a potential
quantum advantage in an example that can be easily extrapolated to an
Artificial Intelligence domain. We carry out different simulations to validate
the performance of QMS and its configuration.
- Abstract(参考訳): 最適化問題の効率的な解決は、今日の業界における重要な問題の1つです。
このタスクは主にスケーラビリティの問題や処理制限を示す古典的なアルゴリズムに依存している。
量子コンピューティングはこの種の問題に挑戦している。
本稿では,量子ウォークに基づくmetropolis-hastings量子アルゴリズムに注目した。
このアルゴリズムを用いて量子メトロポリスソルバ(qms)と呼ばれる量子ソフトウェアツールを構築した。
我々は,N-Queen問題を用いてQMSを検証することで,人工知能領域に容易に外挿可能な量子優位性を示す。
我々は、QMSとその構成の性能を検証するために異なるシミュレーションを行う。
関連論文リスト
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Quantum Algorithm Based Heuristic to Hide Sensitive Itemsets [1.8419202109872088]
データ共有の文脈において、よく研究された問題を解決するための量子的アプローチを提案する。
本稿では, 量子アルゴリズムを用いて, この問題の解決方法を示すために, 小型データセットを用いた実験を行った。
論文 参考訳(メタデータ) (2024-02-12T20:44:46Z) - Exploring the topological sector optimization on quantum computers [5.458469081464264]
トポロジカルセクター最適化(TSO)問題は、量子多体物理学コミュニティにおいて特に関心を集めている。
TSO問題の最適化の難しさは、ギャップレス性に限らず、トポロジカル性にも起因していることを示す。
TSO問題を解決するために、量子コンピュータ上で実現可能な量子想像時間進化(QITE)を利用する。
論文 参考訳(メタデータ) (2023-10-06T14:51:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - NP-hard but no longer hard to solve? Using quantum computing to tackle
optimization problems [1.1470070927586016]
量子コンピュータを用いて最適化問題を解く量子最適化の分野について論じる。
適切なユースケースを通じてこれを実証し、量子コンピュータの現在の品質について論じる。
本稿では、最近の量子最適化のブレークスルーと現状と今後の方向性について論じる。
論文 参考訳(メタデータ) (2022-12-21T12:56:37Z) - Using a quantum computer to solve a real-world problem -- what can be
achieved today? [0.0]
量子コンピューティングは、科学とビジネスの問題の展望に革命をもたらす可能性がある重要な発展技術である。
広範囲にわたる興奮は、フォールトトレラントな量子コンピュータが以前に難解な問題を解く可能性に由来する。
私たちは現在、量子ハードウェアの初期バージョンにより多くの量子アプローチが適用されているいわゆるNISQの時代にあります。
論文 参考訳(メタデータ) (2022-11-23T16:10:53Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
データ集約的な問題領域において重要なNPハード問題である多重クエリ最適化問題(MQO)に取り組む。
ゲート型量子コンピュータ上でMQOを解くために,新しい古典量子アルゴリズムを提案する。
提案アルゴリズムでは, クビット効率が99%に近づき, ほぼ2倍に向上した。
論文 参考訳(メタデータ) (2021-07-22T08:12:49Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。