論文の概要: Enforcing connectivity of 3D linear structures using their 2D
projections
- arxiv url: http://arxiv.org/abs/2207.06832v1
- Date: Thu, 14 Jul 2022 11:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 14:20:41.078051
- Title: Enforcing connectivity of 3D linear structures using their 2D
projections
- Title(参考訳): 2次元投影を用いた3次元線形構造の連結化
- Authors: Doruk Oner, Hussein Osman, Mateusz Kozinski, Pascal Fua
- Abstract要約: 本稿では,2次元投影におけるトポロジ認識損失の総和を最小化することにより,結果の3次元接続性を改善することを提案する。
これにより、精度の向上と、アノテーション付きトレーニングデータの提供に必要なアノテーションの労力の削減が図られる。
- 参考スコア(独自算出の注目度): 54.0598511446694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many biological and medical tasks require the delineation of 3D curvilinear
structures such as blood vessels and neurites from image volumes. This is
typically done using neural networks trained by minimizing voxel-wise loss
functions that do not capture the topological properties of these structures.
As a result, the connectivity of the recovered structures is often wrong, which
lessens their usefulness. In this paper, we propose to improve the 3D
connectivity of our results by minimizing a sum of topology-aware losses on
their 2D projections. This suffices to increase the accuracy and to reduce the
annotation effort required to provide the required annotated training data.
- Abstract(参考訳): 多くの生物学的および医学的なタスクは、血管や神経突起のような3Dカルビリナー構造を画像から切り離す必要がある。
これは典型的には、これらの構造のトポロジカルな特性を捉えないボクセル的損失関数を最小化することで訓練されたニューラルネットワークを用いて行われる。
その結果、回収された構造物の接続はしばしば間違っており、有用性が低下する。
本稿では,2次元投影におけるトポロジー認識損失の和を最小化し,結果の3次元接続性を改善することを提案する。
これにより、精度を高め、必要な注釈付きトレーニングデータを提供するのに必要なアノテーションの労力を減らすことができる。
関連論文リスト
- Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
本稿では, 3次元LiDAR計測を用いて, 暗示表現を用いた大規模3次元再構成を実現する際の課題について述べる。
我々はオクツリーに基づく階層構造を通じて暗黙的な特徴を学習し、保存する。
我々の3D再構成は、現在の最先端3Dマッピング法よりも正確で、完全で、メモリ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-10-05T14:38:49Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
トレーニング中に3次元知識を効率的に埋め込んで3次元データを扱うための,シンプルで効果的な2次元手法を提案する。
本手法は3次元画像にスライスを並べて超高分解能画像を生成する。
2次元ネットワークのみを利用した3次元ネットワークを実現する一方で、モデルの複雑さはおよそ3倍に減少する。
論文 参考訳(メタデータ) (2022-05-05T09:59:03Z) - Hierarchical Graph Networks for 3D Human Pose Estimation [50.600944798627786]
最近の2次元から3次元の人間のポーズ推定は、人間の骨格のトポロジーによって形成されたグラフ構造を利用する傾向がある。
この骨格トポロジーは体の構造を反映するには小さすぎるため、重度の2次元から3次元のあいまいさに悩まされていると我々は主張する。
本稿では,これらの弱点を克服するために,新しいグラフ畳み込みネットワークアーキテクチャである階層グラフネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-23T15:09:03Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Semantic Segmentation of Neuronal Bodies in Fluorescence Microscopy
Using a 2D+3D CNN Training Strategy with Sparsely Annotated Data [0.0]
二次元CNNはニューロンの局在において良い結果をもたらすが、不正確な表面再構成を引き起こす。
3D CNNは手動で大規模なアノテートデータを必要とするため、かなりの人的労力を要する。
スパース2Dアノテーションを用いたネイティブ3D CNNモデルのトレーニングのための2段階戦略を提案する。
論文 参考訳(メタデータ) (2020-08-31T18:01:02Z) - Procrustean Regression Networks: Learning 3D Structure of Non-Rigid
Objects from 2D Annotations [42.476537776831314]
非剛体物体の3次元情報を学習できるニューラルネットワークの学習フレームワークを提案する。
提案手法は,Human 3.6M,300-VW,SURREALデータセット上での最先端手法よりも優れた再構成性能を示す。
論文 参考訳(メタデータ) (2020-07-21T17:29:20Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
3次元の地平線アノテーションを持つ大規模な人的データセットは、野生では入手が困難である。
既存の2Dデータセットを高品質な3Dポーズマッチングで拡張することで、この問題に対処する。
結果として得られるアノテーションは、3Dのプロシージャネットワークをスクラッチからトレーニングするのに十分である。
論文 参考訳(メタデータ) (2020-04-07T20:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。