Enforcing connectivity of 3D linear structures using their 2D
projections
- URL: http://arxiv.org/abs/2207.06832v1
- Date: Thu, 14 Jul 2022 11:42:18 GMT
- Title: Enforcing connectivity of 3D linear structures using their 2D
projections
- Authors: Doruk Oner, Hussein Osman, Mateusz Kozinski, Pascal Fua
- Abstract summary: We propose to improve the 3D connectivity of our results by minimizing a sum of topology-aware losses on their 2D projections.
This suffices to increase the accuracy and to reduce the annotation effort required to provide the required annotated training data.
- Score: 54.0598511446694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many biological and medical tasks require the delineation of 3D curvilinear
structures such as blood vessels and neurites from image volumes. This is
typically done using neural networks trained by minimizing voxel-wise loss
functions that do not capture the topological properties of these structures.
As a result, the connectivity of the recovered structures is often wrong, which
lessens their usefulness. In this paper, we propose to improve the 3D
connectivity of our results by minimizing a sum of topology-aware losses on
their 2D projections. This suffices to increase the accuracy and to reduce the
annotation effort required to provide the required annotated training data.
Related papers
- Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
This paper addresses the problems of achieving large-scale 3D reconstructions with implicit representations using 3D LiDAR measurements.
We learn and store implicit features through an octree-based hierarchical structure, which is sparse and sparse.
Our experiments show that our 3D reconstructions are more accurate, complete, and memory-efficient than current state-of-the-art 3D mapping methods.
arXiv Detail & Related papers (2022-10-05T14:38:49Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
arXiv Detail & Related papers (2022-05-05T09:59:03Z) - Hierarchical Graph Networks for 3D Human Pose Estimation [50.600944798627786]
Recent 2D-to-3D human pose estimation works tend to utilize the graph structure formed by the topology of the human skeleton.
We argue that this skeletal topology is too sparse to reflect the body structure and suffer from serious 2D-to-3D ambiguity problem.
We propose a novel graph convolution network architecture, Hierarchical Graph Networks, to overcome these weaknesses.
arXiv Detail & Related papers (2021-11-23T15:09:03Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Semantic Segmentation of Neuronal Bodies in Fluorescence Microscopy
Using a 2D+3D CNN Training Strategy with Sparsely Annotated Data [0.0]
Bidimensional CNNs yield good results in neuron localization but lead to inaccurate surface reconstruction.
3D CNNs would require manually annotated data on a large scale and hence considerable human effort.
We propose a two-phase strategy for training native 3D CNN models on sparse 2D annotations.
arXiv Detail & Related papers (2020-08-31T18:01:02Z) - Procrustean Regression Networks: Learning 3D Structure of Non-Rigid
Objects from 2D Annotations [42.476537776831314]
We propose a novel framework for training neural networks which is capable of learning 3D information of non-rigid objects.
The proposed framework shows superior reconstruction performance to the state-of-the-art method on the Human 3.6M, 300-VW, and SURREAL datasets.
arXiv Detail & Related papers (2020-07-21T17:29:20Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.