論文の概要: Attribute Graphs Underlying Molecular Generative Models: Path to Learning with Limited Data
- arxiv url: http://arxiv.org/abs/2207.07174v2
- Date: Thu, 29 Aug 2024 19:27:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 20:50:35.771043
- Title: Attribute Graphs Underlying Molecular Generative Models: Path to Learning with Limited Data
- Title(参考訳): 分子生成モデルに基づく属性グラフ:限られたデータによる学習への道
- Authors: Samuel C. Hoffman, Payel Das, Karthikeyan Shanmugam, Kahini Wadhawan, Prasanna Sattigeri,
- Abstract要約: 本研究では,事前学習された生成オートエンコーダの潜伏符号の摂動実験を頼りに属性グラフを探索するアルゴリズムを提案する。
潜在符号間の構造方程式モデルをモデル化する有効なグラフィカルモデルに適合することを示す。
小分子の大きなデータセットで訓練された事前学習された生成オートエンコーダを用いて、グラフィカルモデルを用いて特定の特性を予測できることを実証する。
- 参考スコア(独自算出の注目度): 42.517927809224275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training generative models that capture rich semantics of the data and interpreting the latent representations encoded by such models are very important problems in un-/self-supervised learning. In this work, we provide a simple algorithm that relies on perturbation experiments on latent codes of a pre-trained generative autoencoder to uncover an attribute graph that is implied by the generative model. We perform perturbation experiments to check for influence of a given latent variable on a subset of attributes. Given this, we show that one can fit an effective graphical model that models a structural equation model between latent codes taken as exogenous variables and attributes taken as observed variables. One interesting aspect is that a single latent variable controls multiple overlapping subsets of attributes unlike conventional approaches that try to impose full independence. Using a pre-trained generative autoencoder trained on a large dataset of small molecules, we demonstrate that the graphical model between various molecular attributes and latent codes learned by our algorithm can be used to predict a specific property for molecules which are drawn from a different distribution. We compare prediction models trained on various feature subsets chosen by simple baselines, as well as existing causal discovery and sparse learning/feature selection methods, with the ones in the derived Markov blanket from our method. Results show empirically that the predictor that relies on our Markov blanket attributes is robust to distribution shifts when transferred or fine-tuned with a few samples from the new distribution, especially when training data is limited.
- Abstract(参考訳): データのリッチなセマンティクスをキャプチャし、そのようなモデルによって符号化された潜在表現を解釈する生成モデルを訓練することは、教師なし学習において非常に重要な問題である。
本研究では、事前学習された生成オートエンコーダの潜伏符号の摂動実験を頼りに、生成モデルによって示唆される属性グラフを探索する簡単なアルゴリズムを提案する。
我々は摂動実験を行い、与えられた潜在変数が属性のサブセットに与える影響をチェックする。
この結果から,外因性変数として取られた潜在符号と,観測された変数として取られた属性との間の構造方程式モデルをモデル化する有効なグラフィカルモデルに適合することを示す。
興味深い側面の1つは、単一の潜伏変数が、完全な独立を強制しようとする従来のアプローチとは異なり、属性の複数の重複部分集合を制御することである。
小分子の大規模なデータセットに基づいて学習した事前学習された生成自己エンコーダを用いて,本アルゴリズムで学習した様々な分子特性と潜時符号の間のグラフィカルモデルを用いて,異なる分布から引き出された分子の特定の特性を予測することができることを示す。
従来の因果探索法やスパース学習/特徴選択法と同様に,単純なベースラインで選択された様々な特徴サブセットに基づいて訓練された予測モデルと,本手法から抽出したマルコフブランケットの予測モデルを比較した。
その結果、マルコフの毛布属性に依存する予測器は、新しい分布からいくつかのサンプルを転送または微調整した場合、特にトレーニングデータに制限がある場合、分布シフトに対して頑健であることが実証された。
関連論文リスト
- Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
本稿では,階層構造を確率論的潜在ベクトルに組み込んだ新しい深層生成モデルを提案する。
本モデルは,物理特性と活性に関する小さなデータセットを用いて,分子特性予測のための有効な分子潜在ベクトルを設計できることを実証する。
論文 参考訳(メタデータ) (2023-07-02T17:29:41Z) - Learning Sparsity of Representations with Discrete Latent Variables [15.05207849434673]
本稿では,スパース深部潜伏生成モデルSDLGMを提案する。
表現の空間性は固定されていないが、事前に定義された制限の下で観察そのものに適合する。
推論と学習のために,MC勾配推定器をベースとした補正変分法を開発した。
論文 参考訳(メタデータ) (2023-04-03T12:47:18Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Learning Sparse Latent Representations for Generator Model [7.467412443287767]
そこで本研究では,ジェネレータモデルの潜在空間に空間空間を強制する教師なし学習手法を提案する。
我々のモデルは1つのトップダウンジェネレータネットワークから成り、潜在変数を観測データにマッピングする。
論文 参考訳(メタデータ) (2022-09-20T18:58:24Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Hierarchical Few-Shot Generative Models [18.216729811514718]
本稿では,ニューラルネットワークを階層的なアプローチに拡張する潜伏変数のアプローチについて検討する。
以上の結果から,階層的な定式化は,小データ構造における集合内の内在的変動をよりよく捉えることが示唆された。
論文 参考訳(メタデータ) (2021-10-23T19:19:39Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。