論文の概要: Accelerated Federated Learning with Decoupled Adaptive Optimization
- arxiv url: http://arxiv.org/abs/2207.07223v1
- Date: Thu, 14 Jul 2022 22:46:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-18 14:11:03.996327
- Title: Accelerated Federated Learning with Decoupled Adaptive Optimization
- Title(参考訳): Decoupled Adaptive Optimizationによるフェデレーション学習の高速化
- Authors: Jiayin Jin, Jiaxiang Ren, Yang Zhou, Lingjuan Lyu, Ji Liu, Dejing Dou
- Abstract要約: フェデレートドラーニング(FL)フレームワークは、クライアント上のトレーニングデータのプライバシを維持しながら、共有モデルを協調的に学習することを可能にする。
近年,SGDM,Adam,AdaGradなどの集中型適応最適化手法をフェデレートした設定に一般化するためのイテレーションが多数実施されている。
本研究は、常微分方程式(ODE)のダイナミクスの観点から、FLの新しい適応最適化手法を開発することを目的としている。
- 参考スコア(独自算出の注目度): 53.230515878096426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The federated learning (FL) framework enables edge clients to collaboratively
learn a shared inference model while keeping privacy of training data on
clients. Recently, many heuristics efforts have been made to generalize
centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc.,
to federated settings for improving convergence and accuracy. However, there is
still a paucity of theoretical principles on where to and how to design and
utilize adaptive optimization methods in federated settings. This work aims to
develop novel adaptive optimization methods for FL from the perspective of
dynamics of ordinary differential equations (ODEs). First, an analytic
framework is established to build a connection between federated optimization
methods and decompositions of ODEs of corresponding centralized optimizers.
Second, based on this analytic framework, a momentum decoupling adaptive
optimization method, FedDA, is developed to fully utilize the global momentum
on each local iteration and accelerate the training convergence. Last but not
least, full batch gradients are utilized to mimic centralized optimization in
the end of the training process to ensure the convergence and overcome the
possible inconsistency caused by adaptive optimization methods.
- Abstract(参考訳): federated learning(fl)フレームワークにより、エッジクライアントは、クライアント上のトレーニングデータのプライバシを維持しながら、共有推論モデルを共同学習することが可能になる。
近年,SGDM,Adam,AdaGradなどの集中型適応最適化手法を,収束度と精度を向上させるためのフェデレーション設定に一般化するための多くのヒューリスティックな取り組みがなされている。
しかし, 適応最適化手法をフェデレーション環境で設計・活用する方法については, 理論的な原理が定式化されている。
本研究の目的は、常微分方程式(odes)のダイナミクスの観点から、flのための新しい適応最適化手法の開発である。
まず、フェデレーション最適化手法と、対応する集中最適化器のODEの分解との接続を構築するための分析フレームワークを構築した。
第2に, この解析フレームワークに基づき, 局所反復毎に大域的な運動量を完全に活用し, 学習収束を加速するために, 運動量分離適応最適化法fedaを開発した。
最後に、完全なバッチ勾配を利用して、トレーニングプロセスの終了時に集中的な最適化を模倣し、収束を確実にし、適応最適化手法によって起こりうる矛盾を克服する。
関連論文リスト
- FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Preconditioned Federated Learning [7.7269332266153326]
Federated Learning(FL)は、コミュニケーションの効率的かつプライバシ保護の方法でモデルトレーニングを可能にする分散機械学習アプローチである。
FedAvgは、現代の一階適応最適化と比較してアルゴリズム適応性を欠いていると考えられている。
局所適応性(PreFed)とサーバ側適応性(PreFedOp)の2つのフレームワークに基づく通信効率の高い新しいFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-20T14:58:47Z) - Efficient Federated Learning via Local Adaptive Amended Optimizer with
Linear Speedup [90.26270347459915]
そこで我々は,グローバル・アダプティカル・アダプティカル・アダプティカル・アダプティカル・アダプティカル・アルゴリズムを提案する。
textitLADAは通信ラウンドを大幅に削減し、複数のベースラインよりも高い精度を実現する。
論文 参考訳(メタデータ) (2023-07-30T14:53:21Z) - Optimization-Derived Learning with Essential Convergence Analysis of
Training and Hyper-training [52.39882976848064]
固定点反復に基づく一般化クラスノセルスキーマンスキースキーム(GKM)を基本ODLモジュールとして設計する。
GKMスキームでは、最適トレーニングとハイパートレーニング変数を同時に解くために、バイレベルメタ最適化(BMO)アルゴリズムフレームワークを構築している。
論文 参考訳(メタデータ) (2022-06-16T01:50:25Z) - Accelerating Federated Learning with a Global Biased Optimiser [16.69005478209394]
Federated Learning(FL)は、クライアントデバイスを離れるトレーニングデータなしでモデルを協調訓練する機械学習の分野における最近の開発である。
本稿では,FedGBO(Federated Global Biased Optimiser)アルゴリズムを用いて,適応最適化手法をFLに適用する手法を提案する。
FedGBOは、FLの局所的なトレーニングフェーズにおいて、グローバルバイアス付きオプティマイザ値のセットを適用することでFLを加速し、非IIDデータからのクライアントドリフトを減少させる。
論文 参考訳(メタデータ) (2021-08-20T12:08:44Z) - Local Adaptivity in Federated Learning: Convergence and Consistency [25.293584783673413]
フェデレートラーニング(FL)フレームワークは、局所的に訓練されたモデルを定期的に集約することで、エッジクライアントデバイスに格納された分散データを使用して機械学習モデルをトレーニングする。
局所適応法は収束を加速できるが, 解バイアスを生じさせる可能性があることを示す。
本稿では,この不整合を克服し,FLの局所適応手法を補完する補正手法を提案する。
論文 参考訳(メタデータ) (2021-06-04T07:36:59Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - Adaptive Federated Optimization [43.78438670284309]
フェデレートラーニングでは、多数のクライアントが中央サーバとコーディネートして、自身のデータを共有せずにモデルを学習する。
適応最適化手法は、このような問題に対処する際、顕著な成功を収めている。
適応型学習は,フェデレート学習の性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2020-02-29T16:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。