論文の概要: Robust Deep Compressive Sensing with Recurrent-Residual Structural
Constraints
- arxiv url: http://arxiv.org/abs/2207.07301v1
- Date: Fri, 15 Jul 2022 05:56:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-18 13:43:36.722080
- Title: Robust Deep Compressive Sensing with Recurrent-Residual Structural
Constraints
- Title(参考訳): 再帰的構造制約を伴うロバスト深部圧縮センシング
- Authors: Jun Niu
- Abstract要約: 既存のディープラーニング(CS)手法は、適応的なオンライン最適化を無視するか、コストのかかる反復的な再構築に依存している。
この研究は、R$2$CS-NETと呼ばれる再帰的構造制約を持つ新しいイメージCSフレームワークを探索する。
適応型オンライン最適化を効率的にブリッジする最初のディープCSフレームワークとして、R$2$CS-NETは、オンライン最適化の堅牢性とディープラーニング手法の効率性と非線形能力を統合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep compressive sensing (CS) methods either ignore adaptive online
optimization or depend on costly iterative optimizer during reconstruction.
This work explores a novel image CS framework with recurrent-residual
structural constraint, termed as R$^2$CS-NET. The R$^2$CS-NET first
progressively optimizes the acquired samplings through a novel recurrent neural
network. The cascaded residual convolutional network then fully reconstructs
the image from optimized latent representation. As the first deep CS framework
efficiently bridging adaptive online optimization, the R$^2$CS-NET integrates
the robustness of online optimization with the efficiency and nonlinear
capacity of deep learning methods. Signal correlation has been addressed
through the network architecture. The adaptive sensing nature further makes it
an ideal candidate for color image CS via leveraging channel correlation.
Numerical experiments verify the proposed recurrent latent optimization design
not only fulfills the adaptation motivation, but also outperforms classic long
short-term memory (LSTM) architecture in the same scenario. The overall
framework demonstrates hardware implementation feasibility, with leading
robustness and generalization capability among existing deep CS benchmarks.
- Abstract(参考訳): 既存の深部圧縮センシング(CS)手法は、適応的なオンライン最適化を無視するか、あるいは再構築時にコストのかかる反復最適化に依存する。
この研究は、R$^2$CS-NETと呼ばれる再帰的構造制約を持つ新しいイメージCSフレームワークを探索する。
R$^2$CS-NETは、新しいリカレントニューラルネットワークを通じて取得したサンプリングを段階的に最適化する。
カスケードされた残差畳み込みネットワークは、最適化された潜在表現から画像を完全に再構築する。
適応型オンライン最適化を効率的にブリッジする最初のディープCSフレームワークとして、R$^2$CS-NETは、オンライン最適化の堅牢性とディープラーニング手法の効率性と非線形能力を統合する。
信号相関はネットワークアーキテクチャを通して解決されている。
アダプティブセンシングの性質により、チャネル相関を利用してカラー画像csの理想的な候補となる。
数値実験により,提案手法は適応モチベーションを満足するだけでなく,従来の長寿命メモリ(LSTM)アーキテクチャよりも優れた性能を示す。
全体的なフレームワークは、ハードウェア実装の実現可能性を示し、既存のディープCSベンチマークにおいて、堅牢性と一般化性をリードする。
関連論文リスト
- MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
圧縮センシング(CS)は、従来のサンプリング法よりも少ない測定値を用いてスパース信号の回復を可能にする技術である。
我々はCSを用いた自然画像再構成のための解釈可能かつ簡潔なニューラルネットワークモデルを構築した。
MsDC-DEQ-Netと呼ばれるこのモデルは、最先端のネットワークベースの手法と比較して、競争力のある性能を示す。
論文 参考訳(メタデータ) (2024-01-05T16:25:58Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Delta-STN: Efficient Bilevel Optimization for Neural Networks using
Structured Response Jacobians [5.33024001730262]
自己チューニングネットワーク(STN)は,最近,内部目標の最適化を補正する能力によって,注目を集めている。
トレーニングを安定化する改良されたハイパーネットワークアーキテクチャであるDelta$-STNを提案する。
論文 参考訳(メタデータ) (2020-10-26T12:12:23Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
本稿では、残差接続と畳み込み層の両方を受け入れる一般化微分動的プログラミング(DDP)ニューラルアーキテクチャを提案する。
得られた最適制御表現は、トレーニング残余ネットワークを、状態拡張システム上での協調的軌道最適化と解釈できるゲーム論的視点を許容する。
論文 参考訳(メタデータ) (2020-07-17T10:19:17Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。