Towards Better Dermoscopic Image Feature Representation Learning for
Melanoma Classification
- URL: http://arxiv.org/abs/2207.07303v1
- Date: Fri, 15 Jul 2022 06:07:11 GMT
- Title: Towards Better Dermoscopic Image Feature Representation Learning for
Melanoma Classification
- Authors: ChengHui Yu, MingKang Tang, ShengGe Yang, MingQing Wang, Zhe Xu,
JiangPeng Yan, HanMo Chen, Yu Yang, Xiao-Jun Zeng, Xiu Li
- Abstract summary: Deep learning-based melanoma classification with dermoscopic images has recently shown great potential in automatic early-stage melanoma diagnosis.
In this study, we seek to resolve problems respectively towards better representation learning for lesion features.
Specifically, a GAN-based data augmentation (GDA) strategy is adapted to generate synthetic melanoma-positive images, in conjunction with the proposed implicit hair denoising (IHD) strategy.
To train the IHD module, the hair noises are additionally labeled on the ISIC 2020 dataset, making it the first large-scale dermoscopic dataset with annotation of hair-like artifacts
- Score: 25.525492490284293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based melanoma classification with dermoscopic images has
recently shown great potential in automatic early-stage melanoma diagnosis.
However, limited by the significant data imbalance and obvious extraneous
artifacts, i.e., the hair and ruler markings, discriminative feature extraction
from dermoscopic images is very challenging. In this study, we seek to resolve
these problems respectively towards better representation learning for lesion
features. Specifically, a GAN-based data augmentation (GDA) strategy is adapted
to generate synthetic melanoma-positive images, in conjunction with the
proposed implicit hair denoising (IHD) strategy. Wherein the hair-related
representations are implicitly disentangled via an auxiliary classifier network
and reversely sent to the melanoma-feature extraction backbone for better
melanoma-specific representation learning. Furthermore, to train the IHD
module, the hair noises are additionally labeled on the ISIC2020 dataset,
making it the first large-scale dermoscopic dataset with annotation of
hair-like artifacts. Extensive experiments demonstrate the superiority of the
proposed framework as well as the effectiveness of each component. The improved
dataset publicly avaliable at https://github.com/kirtsy/DermoscopicDataset.
Related papers
- A Comparative Analysis Towards Melanoma Classification Using Transfer
Learning by Analyzing Dermoscopic Images [0.0]
This paper presents a system that combines deep learning techniques with established transfer learning methods to enable skin lesions classification and diagnosis of melanoma skin lesions.
Researchers used 'Deep Learning' techniques to train an expansive number of photos & essentially to get the expected result.
DenseNet performed better than the others which gives a validation accuracy of 96.64%, validation loss of 9.43% & test set accuracy of 99.63%.
arXiv Detail & Related papers (2023-12-02T19:46:48Z) - A Web-based Mpox Skin Lesion Detection System Using State-of-the-art
Deep Learning Models Considering Racial Diversity [1.846958522363092]
'Mpox', formerly known as 'Monkeypox', has become a significant public health concern and has spread to over 110 countries globally.
Computer-aided screening tools have been proven valuable in cases where Polymerase Chain Reaction (PCR) based diagnosis is not immediately available.
Deep learning methods are powerful in learning complex data representations, but their efficacy largely depends on adequate training data.
arXiv Detail & Related papers (2023-06-25T08:23:44Z) - Increasing Melanoma Diagnostic Confidence: Forcing the Convolutional
Network to Learn from the Lesion [0.9143713488498512]
We propose a novel technique to improve melanoma recognition by an EfficientNet model.
The model trains the network to detect the lesion and learn features from the detected lesion.
Test results show that the proposed method improved diagnostic accuracy by increasing the mean area under receiver operating characteristic curve (mean AUC) score from 0.9 to 0.922.
arXiv Detail & Related papers (2023-05-16T15:34:12Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Extended Feature Space-Based Automatic Melanoma Detection System [9.165013127586267]
Melanoma is the deadliest form of skin cancer. Uncontrollable growth of melanocytes leads to melanoma.
The Automatic Melanoma Detection System (AMDS) helps to detect melanoma based on image processing techniques.
A novel algorithm ExtFvAMDS is proposed for the calculation of Extended Feature Vector Space.
arXiv Detail & Related papers (2022-09-10T04:15:45Z) - Data-Driven Deep Supervision for Skin Lesion Classification [36.24996525103533]
We propose a new deep neural network that exploits input data for robust feature extraction.
Specifically, we analyze the convolutional network's behavior (field-of-view) to find the location of deep supervision.
arXiv Detail & Related papers (2022-09-04T03:57:08Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
We propose a new margin-based surrogate loss function for the AUC score.
It is more robust than the commonly used.
square loss while enjoying the same advantage in terms of large-scale optimization.
To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets.
arXiv Detail & Related papers (2020-12-06T03:41:51Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMEN is formulated in a multi-branch fashion with pixel-wised attention model and classification submodular.
To focus more on subtle detail information, the sample image is enhanced by the pixel-wised attention map generated from former branch.
Experiments conducted on three benchmark datasets demonstrate the superiority of the proposed method under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:44:21Z) - Data Augmentation for Histopathological Images Based on
Gaussian-Laplacian Pyramid Blending [59.91656519028334]
Data imbalance is a major problem that affects several machine learning (ML) algorithms.
In this paper, we propose a novel approach capable of not only augmenting HI dataset but also distributing the inter-patient variability.
Experimental results on the BreakHis dataset have shown promising gains vis-a-vis the majority of DA techniques presented in the literature.
arXiv Detail & Related papers (2020-01-31T22:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.