論文の概要: An Approach for Link Prediction in Directed Complex Networks based on
Asymmetric Similarity-Popularity
- arxiv url: http://arxiv.org/abs/2207.07399v1
- Date: Fri, 15 Jul 2022 11:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-18 15:02:30.134979
- Title: An Approach for Link Prediction in Directed Complex Networks based on
Asymmetric Similarity-Popularity
- Title(参考訳): 非対称相似性に基づく有向複素ネットワークにおけるリンク予測の一手法
- Authors: Hafida Benhidour, Lama Almeshkhas, Said Kerrache
- Abstract要約: 本稿では,有向ネットワーク用に明示的に設計されたリンク予測手法を提案する。
これは、最近無方向性ネットワークで成功した類似性-人気パラダイムに基づいている。
アルゴリズムは、隠れた類似性を最も短い経路距離として近似し、リンクの非対称性とノードの人気を捉え、決定するエッジウェイトを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex networks are graphs representing real-life systems that exhibit
unique characteristics not found in purely regular or completely random graphs.
The study of such systems is vital but challenging due to the complexity of the
underlying processes. This task has nevertheless been made easier in recent
decades thanks to the availability of large amounts of networked data. Link
prediction in complex networks aims to estimate the likelihood that a link
between two nodes is missing from the network. Links can be missing due to
imperfections in data collection or simply because they are yet to appear.
Discovering new relationships between entities in networked data has attracted
researchers' attention in various domains such as sociology, computer science,
physics, and biology. Most existing research focuses on link prediction in
undirected complex networks. However, not all real-life systems can be
faithfully represented as undirected networks. This simplifying assumption is
often made when using link prediction algorithms but inevitably leads to loss
of information about relations among nodes and degradation in prediction
performance. This paper introduces a link prediction method designed explicitly
for directed networks. It is based on the similarity-popularity paradigm, which
has recently proven successful in undirected networks. The presented algorithms
handle the asymmetry in node relationships by modeling it as asymmetry in
similarity and popularity. Given the observed network topology, the algorithms
approximate the hidden similarities as shortest path distances using edge
weights that capture and factor out the links' asymmetry and nodes' popularity.
The proposed approach is evaluated on real-life networks, and the experimental
results demonstrate its effectiveness in predicting missing links across a
broad spectrum of networked data types and sizes.
- Abstract(参考訳): 複素ネットワークは、純粋に正規あるいは完全にランダムなグラフには見つからないユニークな特徴を示す実生活システムを表すグラフである。
このようなシステムの研究は不可欠だが、基礎となるプロセスの複雑さのために難しい。
それでもこの作業は、大量のネットワークデータの可用性によって、ここ数十年で容易になっています。
複雑なネットワークにおけるリンク予測は、2つのノード間のリンクがネットワークから欠落している可能性を推定することを目的としている。
データコレクションの不完全性や、単に表示されていないため、リンクが欠落する可能性がある。
ネットワークデータ内の実体間の新たな関係の発見は、社会学、計算機科学、物理学、生物学など様々な分野の研究者の注目を集めている。
既存の研究のほとんどは、無向複雑ネットワークにおけるリンク予測に焦点を当てている。
しかし、現実のシステムは全て無向ネットワークとして忠実に表現できるわけではない。
この単純な仮定はリンク予測アルゴリズムを使用する場合にしばしばなされるが、必然的にノード間の関係に関する情報の喪失と予測性能の低下をもたらす。
本稿では,有向ネットワークを対象としたリンク予測手法を提案する。
これは、最近無方向性ネットワークで成功した類似性-人気パラダイムに基づいている。
提示されたアルゴリズムはノード関係の非対称性を類似性と人気の非対称性としてモデル化する。
観測されたネットワークトポロジから、アルゴリズムは隠れた類似性を最短経路距離として近似し、リンクの非対称性とノードの人気を捉える。
提案手法は実生活ネットワーク上で評価され,ネットワーク化されたデータの種類や大きさの広い範囲にわたるリンク不足を予測できることを示す実験結果が得られた。
関連論文リスト
- NetDiff: Deep Graph Denoising Diffusion for Ad Hoc Network Topology Generation [1.6768151308423371]
本稿では,無線アドホックネットワークリンクトポロジを生成する拡散確率的アーキテクチャを記述したグラフであるNetDiffを紹介する。
この結果から,生成したリンクは現実的であり,データセットグラフに類似した構造的特性を有しており,操作するには小さな修正と検証ステップのみが必要であることがわかった。
論文 参考訳(メタデータ) (2024-10-09T15:39:49Z) - Fitting Low-rank Models on Egocentrically Sampled Partial Networks [4.111899441919165]
本稿では,egocentricly sampled network に対する一般的な低ランクモデルに適合する手法を提案する。
この手法は、エゴセントリックな部分的ネットワーク推定に関する最初の理論的保証を提供する。
本手法を複数の合成および実世界のネットワーク上で評価し,リンク予測タスクにおいて競合性能を実現することを示す。
論文 参考訳(メタデータ) (2023-03-09T03:20:44Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
グラフ学習における最新の方向性として、SNN(Simplicial Neural Network)が最近登場した。
リンク予測のためのBlock Simplicial Complex Neural Networks (BScNets) モデルを提案する。
BScNetsは、コストを抑えながら最先端のモデルよりも大きなマージンを保っている。
論文 参考訳(メタデータ) (2021-12-13T17:35:54Z) - Adversarial Robustness of Probabilistic Network Embedding for Link
Prediction [24.335469995826244]
リンク予測のための条件付きネットワーク埋め込み(CNE)の対角的ロバスト性について検討する。
ネットワークの小さな対向摂動に対するモデルのリンク予測の感度を測定した。
我々のアプローチでは、そのような摂動に最も弱いネットワーク内のリンクとリンクを識別できる。
論文 参考訳(メタデータ) (2021-07-05T11:07:35Z) - Unveiling Anomalous Edges and Nominal Connectivity of Attributed
Networks [53.56901624204265]
本研究では、相補的な強さを持つ2つの異なる定式化を用いて、属性グラフの異常なエッジを明らかにする。
まず、グラフデータマトリックスを低ランクとスパースコンポーネントに分解することで、パフォーマンスを著しく向上させる。
第2は、乱れのないグラフを頑健に復元することにより、第1のスコープを広げ、異常識別性能を高める。
論文 参考訳(メタデータ) (2021-04-17T20:00:40Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Link prediction in multiplex networks via triadic closure [0.9329978164030673]
リンク予測アルゴリズムは複雑なシステムの構造と力学を理解するのに役立つ。
我々は,新しいリンクの予測を改善するために,異なる種類のリレーショナルデータを利用することができることを示す。
本稿では,Adamic-Adar法を任意の層で構成された多重化ネットワークに一般化し,新しいリンク予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-16T20:25:08Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
リンク予測は、動的ネットワークにおける次の関係を推定する。
動的に進化するネットワークを表現するための隣接行列の使用は、異種、スパース、またはネットワーク形成から解析的に学習する能力を制限する。
時間的パラメータ化ネットワークモデルとして不均一な時間進化活動を表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-06T07:28:03Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
コミュニティは、ソーシャルネットワーク、生物学的ネットワーク、コンピュータおよび情報ネットワークを含むネットワークの共通の特徴である。
我々は,全同種ネットワークのコミュニティを同時に検出する効率的なメッセージパッシングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:36:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。