Sparse Relational Reasoning with Object-Centric Representations
- URL: http://arxiv.org/abs/2207.07512v1
- Date: Fri, 15 Jul 2022 14:57:33 GMT
- Title: Sparse Relational Reasoning with Object-Centric Representations
- Authors: Alex F. Spies, Alessandra Russo and Murray Shanahan
- Abstract summary: We investigate the composability of soft-rules learned by relational neural architectures when operating over object-centric representations.
We find that increasing sparsity, especially on features, improves the performance of some models and leads to simpler relations.
- Score: 78.83747601814669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the composability of soft-rules learned by relational neural
architectures when operating over object-centric (slot-based) representations,
under a variety of sparsity-inducing constraints. We find that increasing
sparsity, especially on features, improves the performance of some models and
leads to simpler relations. Additionally, we observe that object-centric
representations can be detrimental when not all objects are fully captured; a
failure mode to which CNNs are less prone. These findings demonstrate the
trade-offs between interpretability and performance, even for models designed
to tackle relational tasks.
Related papers
- LARS-VSA: A Vector Symbolic Architecture For Learning with Abstract Rules [1.3049516752695616]
We propose a "relational bottleneck" that separates object-level features from abstract rules, allowing learning from limited amounts of data.
We adapt the "relational bottleneck" strategy to a high-dimensional space, incorporating explicit vector binding operations between symbols and relational representations.
Our system benefits from the low overhead of operations in hyperdimensional space, making it significantly more efficient than the state of the art when evaluated on a variety of test datasets.
arXiv Detail & Related papers (2024-05-23T11:05:42Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Triplet is a causal representation learning benchmark featuring visually more complex scenes.
We show that models built with the knowledge of disentangled or object-centric representations significantly outperform their distributed counterparts.
arXiv Detail & Related papers (2023-01-12T17:43:38Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
We introduce a simple architecture based on similarity-distribution scores which we name Compositional Network generalization (CoRelNet)
We find that simple architectural choices can outperform existing models in out-of-distribution generalizations.
arXiv Detail & Related papers (2022-06-09T16:24:01Z) - DORA: Exploring Outlier Representations in Deep Neural Networks [0.0]
We present DORA, the first data-agnostic framework for analyzing the representational space of Deep Neural Networks (DNNs)
Central to our framework is the proposed Extreme-Activation (EA) distance measure, which assesses similarities between representations.
We validate the EA metric quantitatively, demonstrating its effectiveness both in controlled scenarios and real-world applications.
arXiv Detail & Related papers (2022-06-09T14:25:14Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Structure-Regularized Attention for Deformable Object Representation [17.120035855774344]
Capturing contextual dependencies has proven useful to improve the representational power of deep neural networks.
Recent approaches that focus on modeling global context, such as self-attention and non-local operation, achieve this goal by enabling unconstrained pairwise interactions between elements.
We consider learning representations for deformable objects which can benefit from context exploitation by modeling the structural dependencies that the data intrinsically possesses.
arXiv Detail & Related papers (2021-06-12T03:10:17Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
We introduce 14 probing tasks targeting linguistic properties relevant to neural relation extraction (RE)
We use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets.
We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance.
arXiv Detail & Related papers (2020-04-17T09:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.