Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT
- URL: http://arxiv.org/abs/2207.07919v1
- Date: Sat, 16 Jul 2022 12:05:06 GMT
- Title: Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT
- Authors: Poornima Singh Thakur, Pritee Khanna, Tanuja Sheorey, Aparajita Ojha
- Abstract summary: Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
- Score: 11.623005206620498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plant diseases are the primary cause of crop losses globally, with an impact
on the world economy. To deal with these issues, smart agriculture solutions
are evolving that combine the Internet of Things and machine learning for early
disease detection and control. Many such systems use vision-based machine
learning methods for real-time disease detection and diagnosis. With the
advancement in deep learning techniques, new methods have emerged that employ
convolutional neural networks for plant disease detection and identification.
Another trend in vision-based deep learning is the use of vision transformers,
which have proved to be powerful models for classification and other problems.
However, vision transformers have rarely been investigated for plant pathology
applications. In this study, a Vision Transformer enabled Convolutional Neural
Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model combines the capabilities of traditional convolutional
neural networks with the Vision Transformers to efficiently identify a large
number of plant diseases for several crops. The proposed model has a
lightweight structure with only 0.8 million trainable parameters, which makes
it suitable for IoT-based smart agriculture services. The performance of
PlantXViT is evaluated on five publicly available datasets. The proposed
PlantXViT network performs better than five state-of-the-art methods on all
five datasets. The average accuracy for recognising plant diseases is shown to
exceed 93.55%, 92.59%, and 98.33% on Apple, Maize, and Rice datasets,
respectively, even under challenging background conditions. The efficiency in
terms of explainability of the proposed model is evaluated using
gradient-weighted class activation maps and Local Interpretable Model Agnostic
Explanation.
Related papers
- Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration [0.0]
Plant diseases significantly impact agricultural productivity, resulting in economic losses and food insecurity.
This study investigates advanced techniques in plant disease detection, emphasizing the integration of image processing, machine learning, deep learning methods, and mobile technologies.
High-resolution images of plant leaves were captured and analyzed using convolutional neural networks (CNNs) to detect symptoms of various diseases, such as blight, mildew, and rust.
The model was trained on a diverse dataset encompassing multiple crops and disease types, achieving 98.14% accuracy in disease diagnosis.
arXiv Detail & Related papers (2024-08-26T07:16:41Z) - Benchmarking In-the-wild Multimodal Disease Recognition and A Versatile Baseline [42.49727243388804]
We propose an in-the-wild multimodal plant disease recognition dataset.
It contains the largest number of disease classes but also text-based descriptions for each disease.
Our proposed dataset can be regarded as an ideal testbed for evaluating disease recognition methods in the real world.
arXiv Detail & Related papers (2024-08-06T11:49:13Z) - Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive
Review [0.0]
Jamun leaf diseases pose a significant threat to agricultural productivity.
The advent of machine learning has opened up new avenues for tackling these diseases effectively.
Various automated systems have been implemented for similar types of disease detection using image processing techniques.
arXiv Detail & Related papers (2023-11-27T11:46:30Z) - Machine Learning-Based Tea Leaf Disease Detection: A Comprehensive
Review [3.3916160303055563]
Tea leaf diseases are a major challenge to agricultural productivity, with far-reaching implications for yield and quality in the tea industry.
The rise of machine learning has enabled the development of innovative approaches to combat these diseases.
For predicting tea leaf disease, several automated systems have already been developed using different image processing techniques.
arXiv Detail & Related papers (2023-11-06T16:30:40Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.