Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis
- URL: http://arxiv.org/abs/2003.07603v2
- Date: Wed, 18 Mar 2020 03:01:25 GMT
- Title: Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis
- Authors: Ruifeng Shi, Deming Zhai, Xianming Liu, Junjun Jiang, Wen Gao
- Abstract summary: Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
- Score: 64.82680813427054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Plant diseases serve as one of main threats to food security and crop
production. It is thus valuable to exploit recent advances of artificial
intelligence to assist plant disease diagnosis. One popular approach is to
transform this problem as a leaf image classification task, which can be then
addressed by the powerful convolutional neural networks (CNNs). However, the
performance of CNN-based classification approach depends on a large amount of
high-quality manually labeled training data, which are inevitably introduced
noise on labels in practice, leading to model overfitting and performance
degradation. To overcome this problem, we propose a novel framework that
incorporates rectified meta-learning module into common CNN paradigm to train a
noise-robust deep network without using extra supervision information. The
proposed method enjoys the following merits: i) A rectified meta-learning is
designed to pay more attention to unbiased samples, leading to accelerated
convergence and improved classification accuracy. ii) Our method is free on
assumption of label noise distribution, which works well on various kinds of
noise. iii) Our method serves as a plug-and-play module, which can be embedded
into any deep models optimized by gradient descent based method. Extensive
experiments are conducted to demonstrate the superior performance of our
algorithm over the state-of-the-arts.
Related papers
- Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
Adversarial purification is one of the promising approaches to defend neural networks against adversarial attacks.
We propose gUided Purification (COUP) algorithm, which purifies while keeping away from the classifier decision boundary.
Experimental results show that COUP can achieve better adversarial robustness under strong attack methods.
arXiv Detail & Related papers (2024-08-12T02:48:00Z) - FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks [4.097623533226476]
We propose the Feature-aware Fusion Correlation Neural Network (FaFCNN), which introduces a feature-aware interaction module and a feature alignment module based on domain adversarial learning.
The experimental results show that training using augmented features obtained by pre-training gradient boosting decision tree yields more performance gains than random-forest based methods.
arXiv Detail & Related papers (2023-07-24T04:23:08Z) - Learning with Noisy Labels through Learnable Weighting and Centroid Similarity [5.187216033152917]
noisy labels are prevalent in domains such as medical diagnosis and autonomous driving.
We introduce a novel method for training machine learning models in the presence of noisy labels.
Our results show that our method consistently outperforms the existing state-of-the-art techniques.
arXiv Detail & Related papers (2023-03-16T16:43:24Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
This paper proposes a new knowledge distillation network, called Dual Knowledge Align Network (DKAN)
The proposed DKAN method follows a pretraining-finetuning transfer learning paradigm and a knowledge distillation framework is designed for fine-tuning.
Experiments have been conducted on the incremental Few-shot NEU-DET dataset and results show that DKAN outperforms other methods on various few-shot scenes.
arXiv Detail & Related papers (2022-09-01T15:08:44Z) - Hard Sample Aware Noise Robust Learning for Histopathology Image
Classification [4.75542005200538]
We introduce a novel hard sample aware noise robust learning method for histopathology image classification.
To distinguish the informative hard samples from the harmful noisy ones, we build an easy/hard/noisy (EHN) detection model.
We propose a noise suppressing and hard enhancing (NSHE) scheme to train the noise robust model.
arXiv Detail & Related papers (2021-12-05T11:07:55Z) - Learning to Rectify for Robust Learning with Noisy Labels [25.149277009932423]
We propose warped probabilistic inference (WarPI) to achieve adaptively rectifying the training procedure for the classification network.
We evaluate WarPI on four benchmarks of robust learning with noisy labels and achieve the new state-of-the-art under variant noise types.
arXiv Detail & Related papers (2021-11-08T02:25:50Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Data-driven Meta-set Based Fine-Grained Visual Classification [61.083706396575295]
We propose a data-driven meta-set based approach to deal with noisy web images for fine-grained recognition.
Specifically, guided by a small amount of clean meta-set, we train a selection net in a meta-learning manner to distinguish in- and out-of-distribution noisy images.
arXiv Detail & Related papers (2020-08-06T03:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.