Reinforcement Learning For Survival, A Clinically Motivated Method For
Critically Ill Patients
- URL: http://arxiv.org/abs/2207.08040v2
- Date: Tue, 19 Jul 2022 22:39:30 GMT
- Title: Reinforcement Learning For Survival, A Clinically Motivated Method For
Critically Ill Patients
- Authors: Thesath Nanayakkara
- Abstract summary: We propose a clinically motivated control objective for critically ill patients, for which the value functions have a simple medical interpretation.
We experiment on a large cohort and show that our method produces results consistent with clinical knowledge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been considerable interest in leveraging RL and stochastic control
methods to learn optimal treatment strategies for critically ill patients,
directly from observational data. However, there is significant ambiguity on
the control objective and on the best reward choice for the standard RL
objective. In this work, we propose a clinically motivated control objective
for critically ill patients, for which the value functions have a simple
medical interpretation. Further, we present theoretical results and adapt our
method to a practical Deep RL algorithm, which can be used alongside any value
based Deep RL method. We experiment on a large sepsis cohort and show that our
method produces results consistent with clinical knowledge.
Related papers
- Development and Validation of Heparin Dosing Policies Using an Offline Reinforcement Learning Algorithm [0.7519918949973486]
This study proposes a reinforcement learning-based personalized optimal heparin dosing policy.
A batch-constrained policy was implemented to minimize out-of-distribution errors in an offline RL environment.
This research enhances heparin administration practices and establishes a precedent for the development of sophisticated decision-support tools in medicine.
arXiv Detail & Related papers (2024-09-24T05:20:38Z) - OMG-RL:Offline Model-based Guided Reward Learning for Heparin Treatment [0.4998632546280975]
This study focuses on developing a reward function that reflects the clinician's intentions.
We learn a parameterized reward function that includes the expert's intentions from limited data.
This approach can be broadly utilized not only for the heparin dosing problem but also for RL-based medication dosing tasks in general.
arXiv Detail & Related papers (2024-09-20T07:51:37Z) - Pruning the Way to Reliable Policies: A Multi-Objective Deep Q-Learning Approach to Critical Care [46.2482873419289]
We introduce a deep Q-learning approach to obtain more reliable critical care policies.
We evaluate our method in off-policy and offline settings using simulated environments and real health records from intensive care units.
arXiv Detail & Related papers (2023-06-13T18:02:57Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
We show that high temporal-difference (TD) error on the validation set of transitions is the main culprit that severely affects the performance of deep RL algorithms.
We show that a simple online model selection method that targets the validation TD error is effective across state-based DMC and Gym tasks.
arXiv Detail & Related papers (2023-04-20T17:11:05Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Trajectory Inspection: A Method for Iterative Clinician-Driven Design of
Reinforcement Learning Studies [5.5302127686575435]
We highlight a simple approach, trajectory inspection, to bring clinicians into an iterative design process for model-based RL studies.
We identify where the model recommends unexpectedly aggressive treatments or expects surprisingly positive outcomes from its recommendations.
arXiv Detail & Related papers (2020-10-08T22:03:01Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.