論文の概要: Automatic Context Pattern Generation for Entity Set Expansion
- arxiv url: http://arxiv.org/abs/2207.08087v2
- Date: Tue, 19 Jul 2022 03:40:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 11:08:36.358570
- Title: Automatic Context Pattern Generation for Entity Set Expansion
- Title(参考訳): エンティティセット拡張のためのコンテキストパターンの自動生成
- Authors: Yinghui Li, Shulin Huang, Xinwei Zhang, Qingyu Zhou, Yangning Li,
Ruiyang Liu, Yunbo Cao, Hai-Tao Zheng, Ying Shen
- Abstract要約: 我々は,エンティティの高品質なコンテキストパターンを自動的に生成するモジュールを開発する。
また、前述のGenerAted PAtternsを活用してターゲットエンティティを拡張するGAPAフレームワークを提案する。
- 参考スコア(独自算出の注目度): 40.535332689515656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity Set Expansion (ESE) is a valuable task that aims to find entities of
the target semantic class described by given seed entities. Various NLP and IR
downstream applications have benefited from ESE due to its ability to discover
knowledge. Although existing bootstrapping methods have achieved great
progress, most of them still rely on manually pre-defined context patterns. A
non-negligible shortcoming of the pre-defined context patterns is that they
cannot be flexibly generalized to all kinds of semantic classes, and we call
this phenomenon as "semantic sensitivity". To address this problem, we devise a
context pattern generation module that utilizes autoregressive language models
(e.g., GPT-2) to automatically generate high-quality context patterns for
entities. In addition, we propose the GAPA, a novel ESE framework that
leverages the aforementioned GenerAted PAtterns to expand target entities.
Extensive experiments and detailed analyses on three widely used datasets
demonstrate the effectiveness of our method. All the codes of our experiments
will be available for reproducibility.
- Abstract(参考訳): Entity Set Expansion(ESE)は、与えられたシードエンティティによって記述されたターゲットセマンティッククラスのエンティティを見つけることを目的とした、貴重なタスクである。
様々なNLPおよびIRダウンストリームアプリケーションは、知識を発見する能力により、ESEの恩恵を受けている。
既存のブートストラップメソッドは大きな進歩を遂げているが、その多くは手動で定義したコンテキストパターンに依存している。
事前定義された文脈パターンの無視できない欠点は、それらがあらゆる種類の意味クラスに柔軟に一般化できないことである。
この問題に対処するために,自動回帰言語モデル(GPT-2)を利用したコンテキストパターン生成モジュールを考案し,エンティティの高品質なコンテキストパターンを自動的に生成する。
さらに,上述したジェネアテッド・パタンをターゲットエンティティの拡張に利用した新しいESEフレームワークであるGAPAを提案する。
広範に使用される3つのデータセットに関する広範な実験と詳細な分析により,本手法の有効性が証明された。
実験のすべてのコードは再現可能になります。
関連論文リスト
- A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning [3.30307212568497]
本稿では,移動学習を用いたアスペクトベース感性分析のためのハイブリッド手法を提案する。
このアプローチは、大きな言語モデル(LLM)と従来の構文的依存関係の両方の長所を利用して、弱い教師付きアノテーションを生成することに焦点を当てている。
論文 参考訳(メタデータ) (2024-03-25T23:02:33Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - Dynamic Retrieval-Augmented Generation [4.741884506444161]
動的検索・拡張生成(DRAG)のための新しい手法を提案する。
DRAGは、取得したエンティティの圧縮埋め込みを生成モデルに注入する。
提案手法は,(1)コンテキストウィンドウの長さ制限を解除し,迅速なサイズを節約すること,(2)コンテキストに利用可能な検索エンティティの数を膨大に拡張すること,(3)ミススペルや関連エンティティ名検索の失敗を緩和すること,の3つの目標を達成する。
論文 参考訳(メタデータ) (2023-12-14T14:26:57Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation
and Instance Generation [36.541309948222306]
各エンティティタイプに対して,アノテーション付きエンティティ参照が付与される場合,FET(Fall-shot Fine-fine Entity Typing)の問題について検討する。
そこで本稿では,(1) エンティティ型ラベル解釈モジュールが,少数ショットインスタンスとラベル階層を併用することで,タイプラベルと語彙の関連付けを自動的に学習し,(2) 型ベースのコンテキスト化インスタンス生成器は,与えられたインスタンスに基づいて新しいインスタンスを生成して,より一般化のためにトレーニングセットを拡大する,という,2つのモジュールからなる新しいFETフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-28T04:05:40Z) - Contrastive Learning with Hard Negative Entities for Entity Set
Expansion [29.155036098444008]
様々なNLPおよびIRアプリケーションは、知識を発見する能力により、ESEの恩恵を受けるだろう。
我々は、エンティティの表現を洗練させるために、コントラスト学習を伴うエンティティレベルのマスキング言語モデルを考案する。
さらに、上記の言語モデルによって得られたエンティティ表現を利用してエンティティを拡張する新しい確率的ESEフレームワークであるProbExpanを提案する。
論文 参考訳(メタデータ) (2022-04-16T12:26:42Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
文法に基づく意味解析を行い,その上に典型的な文脈モデリング手法を適用する。
我々は,2つの大きなクロスドメインデータセットに対して,13のコンテキストモデリング手法を評価した。
論文 参考訳(メタデータ) (2020-02-03T11:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。