Calculation of the moscovium ground-state energy by quantum algorithms
- URL: http://arxiv.org/abs/2207.08255v2
- Date: Thu, 24 Nov 2022 09:37:05 GMT
- Title: Calculation of the moscovium ground-state energy by quantum algorithms
- Authors: V. A. Zaytsev, M. E. Groshev, I. A. Maltsev, A. V. Durova, V. M.
Shabaev
- Abstract summary: We investigate the possibility to calculate the ground-state energy of the atomic systems on a quantum computer.
We evaluate the lowest binding energy of the moscovium atom with the use of the iterative phase estimation and variational quantum eigensolver.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the possibility to calculate the ground-state energy of the
atomic systems on a quantum computer. For this purpose we evaluate the lowest
binding energy of the moscovium atom with the use of the iterative phase
estimation and variational quantum eigensolver. The calculations by the
variational quantum eigensolver are performed with a disentangled unitary
coupled cluster ansatz and with various types of hardware-efficient ansatze.
The optimization is performed with the use of the Adam and Quantum Natural
Gradients procedures. The scalability of the ansatze and optimizers is tested
by increasing the size of the basis set and the number of active electrons. The
number of gates required for the iterative phase estimation and variational
quantum eigensolver is also estimated.
Related papers
- Quantum Computation of Electronic Structure with Projector Augmented-Wave Method and Plane Wave Basis Set [3.087342164520494]
We present an implementation of the PAW with plane waves for quantum computation of the energy.
We provide the quantum resources for energy estimation of a nitrogen-vacancy defect centre in diamond.
arXiv Detail & Related papers (2024-08-06T12:56:10Z) - Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction [0.4909687476363595]
We embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections (DBBSC)
We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit.
The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties.
arXiv Detail & Related papers (2024-05-19T14:31:01Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Ionization energies in lithium and boron atoms using the Variational
Quantum Eigensolver algorithm [0.0]
The classical-quantum hybrid Variational Quantum Eigensolver algorithm is the most widely used approach in the Noisy Intermediate Scale Quantum era.
We extend the scope of properties that can be calculated using the algorithm by computing the first ionization energies of Lithium and Boron atoms.
arXiv Detail & Related papers (2021-09-26T12:28:40Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.