Quantum Computation of Electronic Structure with Projector Augmented-Wave Method and Plane Wave Basis Set
- URL: http://arxiv.org/abs/2408.03159v1
- Date: Tue, 6 Aug 2024 12:56:10 GMT
- Title: Quantum Computation of Electronic Structure with Projector Augmented-Wave Method and Plane Wave Basis Set
- Authors: Aleksei V. Ivanov, Andrew Patterson, Marius Bothe, Christoph Sünderhauf, Bjorn K. Berntson, Jens Jørgen Mortensen, Mikael Kuisma, Earl Campbell, Róbert Izsák,
- Abstract summary: We present an implementation of the PAW with plane waves for quantum computation of the energy.
We provide the quantum resources for energy estimation of a nitrogen-vacancy defect centre in diamond.
- Score: 3.087342164520494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulation of materials is a promising application area of quantum computers. In order to realize this promise, finding ways to reduce quantum resources while maintaining the accuracy of results will be necessary. In electronic structure calculations on classical computer the reduction of resources has been achieved by using the projector augmented-wave method (PAW) and plane wave basis sets. In this work, we present an implementation of the PAW with plane waves for quantum computation of the energy. We first generalize the approach to many-body wavefunctions and develop the unitary version of the PAW which preserves the orthonormality of orbitals. Then, we provide a linear-combination-of-unitaries decomposition which explicitly accounts for the atomic two-body PAW correction and provide the corresponding block encodings of the Hamiltonian used in qubitized quantum phase estimation. We then estimate quantum resources for crystalline solids using down-sampling to estimate the energy within chemical accuracy with respect to the full basis set limit, and also consider a supercell approach which is more suitable for calculations of defect states. We provide the quantum resources for energy estimation of a nitrogen-vacancy defect centre in diamond which is a challenging system for classical algorithms and a quintessential problem in the studies of quantum point defects.
Related papers
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Variational quantum eigensolver for closed-shell molecules with
non-bosonic corrections [6.3235499003745455]
We introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic terms.
We find our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.
arXiv Detail & Related papers (2023-10-11T16:47:45Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - A full circuit-based quantum algorithm for excited-states in quantum
chemistry [6.973166066636441]
We propose a non-variational full circuit-based quantum algorithm for obtaining the excited-state spectrum of a quantum chemistry Hamiltonian.
Compared with previous classical-quantum hybrid variational algorithms, our method eliminates the classical optimization process.
The algorithm can be widely applied to various Hamiltonian spectrum determination problems on the fault-tolerant quantum computers.
arXiv Detail & Related papers (2021-12-28T15:48:09Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Simulating the electronic structure of spin defects on quantum computers [0.0]
We present calculations of the ground and excited state energies of spin defects in solids carried out on a quantum computer.
We focus on the negatively charged nitrogen vacancy center in diamond and on the double vacancy in 4H-SiC.
arXiv Detail & Related papers (2021-12-08T17:55:23Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Heisenberg-limited ground state energy estimation for early
fault-tolerant quantum computers [3.7747526957907303]
We propose an alternative method to estimate the ground state energy of a Hamiltonian with Heisenberg-limited precision scaling.
Our algorithm also produces an approximate cumulative distribution function of the spectral measure.
arXiv Detail & Related papers (2021-02-22T20:21:56Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.