論文の概要: Bayesian Optimization for Macro Placement
- arxiv url: http://arxiv.org/abs/2207.08398v1
- Date: Mon, 18 Jul 2022 06:17:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 19:18:44.886317
- Title: Bayesian Optimization for Macro Placement
- Title(参考訳): マクロ配置に対するベイズ最適化
- Authors: Changyong Oh, Roberto Bondesan, Dana Kianfar, Rehan Ahmed, Rishubh
Khurana, Payal Agarwal, Romain Lepert, Mysore Sriram, Max Welling
- Abstract要約: 本研究では,系列対上のベイズ最適化(BO)を用いた新しいマクロ配置法を提案する。
BOは確率的代理モデルと獲得関数を利用する機械学習技術である。
固定アウトラインマクロ配置問題に対して, 半周波線長目標を用いたアルゴリズムを実証する。
- 参考スコア(独自算出の注目度): 48.55456716632735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Macro placement is the problem of placing memory blocks on a chip canvas. It
can be formulated as a combinatorial optimization problem over sequence pairs,
a representation which describes the relative positions of macros. Solving this
problem is particularly challenging since the objective function is expensive
to evaluate. In this paper, we develop a novel approach to macro placement
using Bayesian optimization (BO) over sequence pairs. BO is a machine learning
technique that uses a probabilistic surrogate model and an acquisition function
that balances exploration and exploitation to efficiently optimize a black-box
objective function. BO is more sample-efficient than reinforcement learning and
therefore can be used with more realistic objectives. Additionally, the ability
to learn from data and adapt the algorithm to the objective function makes BO
an appealing alternative to other black-box optimization methods such as
simulated annealing, which relies on problem-dependent heuristics and
parameter-tuning. We benchmark our algorithm on the fixed-outline macro
placement problem with the half-perimeter wire length objective and demonstrate
competitive performance.
- Abstract(参考訳): マクロ配置は、メモリブロックをチップキャンバスに配置する問題である。
これは、マクロの相対位置を記述する表現であるシーケンスペア上の組合せ最適化問題として定式化することができる。
客観的関数の評価が高価であるため,この問題の解決は特に困難である。
本稿では,系列対上のベイズ最適化(BO)を用いた新しいマクロ配置法を提案する。
boは、確率的サロゲートモデルと探索と搾取のバランスをとり、ブラックボックスの目的関数を効率的に最適化する獲得関数を使用する機械学習技術である。
boは強化学習よりもサンプル効率が高いため、より現実的な目的に使用できる。
さらに、データから学習し、アルゴリズムを目的関数に適応させる能力により、BOは問題依存のヒューリスティックやパラメータチューニングに依存するシミュレートアニーリングのような他のブラックボックス最適化手法に代わる魅力的な選択肢となる。
我々は,固定アウトラインマクロ配置問題に対して,半周線長目標を用いてベンチマークを行い,競合性能を示す。
関連論文リスト
- Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
本稿では,BOの限界に対処するための新しいベイズ最適化フレームワークを提案する。
我々の重要な貢献は、高度にスケーラブルでサンプルベースの取得機能であり、非支配的な目的のソートを実行する。
我々は,ベイズ型ニューラルネットワークサロゲートと組み合わせることで,最小限の反復数でデータ集約環境に有効であることを示す。
論文 参考訳(メタデータ) (2023-06-01T19:10:57Z) - Batch Bayesian Optimization via Particle Gradient Flows [0.5735035463793008]
ブラックボックスとしてしか利用できない,あるいは評価に費用がかかる対象関数のグローバルな最適化方法を示す。
確率測度の空間上の多点予測確率に基づく新しい関数を構築する。
論文 参考訳(メタデータ) (2022-09-10T18:10:15Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - MBORE: Multi-objective Bayesian Optimisation by Density-Ratio Estimation [0.01652719262940403]
最適化問題は、しばしば計算的に、あるいは金銭的にコストがかかる複数の矛盾する目標を持つ。
単代理ベイズ最適化(BO)は、そのようなブラックボックス関数を最適化するための一般的なモデルベースのアプローチである。
BOREによるBOの先行研究を多目的設定に拡張する。
論文 参考訳(メタデータ) (2022-03-31T09:27:59Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Many Objective Bayesian Optimization [0.0]
マルチオブジェクトベイズ最適化(MOBO)は、ブラックボックスの同時最適化に成功している一連の手法である。
特に、MOBO法は、多目的最適化問題における目的の数が3以上である場合に問題があり、これは多くの目的設定である。
GPが測定値とアルゴリズムの有効性の予測分布を予測できるような,玩具,合成,ベンチマーク,実実験のセットで実証的な証拠を示す。
論文 参考訳(メタデータ) (2021-07-08T21:57:07Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。