wPINNs: Weak Physics informed neural networks for approximating entropy
solutions of hyperbolic conservation laws
- URL: http://arxiv.org/abs/2207.08483v1
- Date: Mon, 18 Jul 2022 10:07:13 GMT
- Title: wPINNs: Weak Physics informed neural networks for approximating entropy
solutions of hyperbolic conservation laws
- Authors: Tim De Ryck, Siddhartha Mishra and Roberto Molinaro
- Abstract summary: Physics informed neural networks (PINNs) require regularity of solutions of the underlying PDE to guarantee accurate approximation.
We propose a novel variant of PINNs, termed as weak PINNs (wPINNs) for accurate approximation of entropy solutions of scalar conservation laws.
- Score: 6.445605125467574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics informed neural networks (PINNs) require regularity of solutions of
the underlying PDE to guarantee accurate approximation. Consequently, they may
fail at approximating discontinuous solutions of PDEs such as nonlinear
hyperbolic equations. To ameliorate this, we propose a novel variant of PINNs,
termed as weak PINNs (wPINNs) for accurate approximation of entropy solutions
of scalar conservation laws. wPINNs are based on approximating the solution of
a min-max optimization problem for a residual, defined in terms of Kruzkhov
entropies, to determine parameters for the neural networks approximating the
entropy solution as well as test functions. We prove rigorous bounds on the
error incurred by wPINNs and illustrate their performance through numerical
experiments to demonstrate that wPINNs can approximate entropy solutions
accurately.
Related papers
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
We leverageformed-Informed Neural Networks (PINs) to learn solution functions of parametric Navier-Stokes equations (NSE)
We consider the parameter(s) of interest as inputs of PINs along with coordinates, and train PINs on numerical solutions of parametric-PDES for instances of the parameters.
We show that our proposed approach results in optimizing PINN models that learn the solution functions while making sure that flow predictions are in line with conservational laws of mass and momentum.
arXiv Detail & Related papers (2024-02-05T16:19:53Z) - Grad-Shafranov equilibria via data-free physics informed neural networks [0.0]
We show that PINNs can accurately and effectively solve the Grad-Shafranov equation with several different boundary conditions.
We introduce a parameterized PINN framework, expanding the input space to include variables such as pressure, aspect ratio, elongation, and triangularity.
arXiv Detail & Related papers (2023-11-22T16:08:38Z) - Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics
Informed Neural Nets and strengthens their Approximation Power [0.6091702876917279]
We present a novel class of approximations for variational losses, being applicable for the training of physics-informed neural nets (PINNs)
The loss computation rests on an extension of Gauss-Legendre cubatures, we term Sobolev cubatures, replacing automatic differentiation (A.D.)
arXiv Detail & Related papers (2022-11-23T11:23:08Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
We develop a physics-informed neural network (PINN) model for parabolic problems with a sharply perturbed initial condition.
Localized large gradients in the ADE solution make the (common in PINN) Latin hypercube sampling of the equation's residual highly inefficient.
We propose criteria for weights in the loss function that produce a more accurate PINN solution than those obtained with the weights selected via other methods.
arXiv Detail & Related papers (2022-08-18T05:00:24Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
Physics-Informed Neural Networks (PINNs) are powerful approximators of solutions to nonlinear partial differential equations (PDEs)
We propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs)
We demonstrate through various numerical experiments that AL-PINNs yield a much smaller relative error compared with that of state-of-the-art adaptive loss-balancing algorithms.
arXiv Detail & Related papers (2022-04-29T08:33:11Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.