Grad-Shafranov equilibria via data-free physics informed neural networks
- URL: http://arxiv.org/abs/2311.13491v1
- Date: Wed, 22 Nov 2023 16:08:38 GMT
- Title: Grad-Shafranov equilibria via data-free physics informed neural networks
- Authors: Byoungchan Jang, Alan A. Kaptanoglu, Rahul Gaur, Shaw Pan, Matt
Landreman, William Dorland
- Abstract summary: We show that PINNs can accurately and effectively solve the Grad-Shafranov equation with several different boundary conditions.
We introduce a parameterized PINN framework, expanding the input space to include variables such as pressure, aspect ratio, elongation, and triangularity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A large number of magnetohydrodynamic (MHD) equilibrium calculations are
often required for uncertainty quantification, optimization, and real-time
diagnostic information, making MHD equilibrium codes vital to the field of
plasma physics. In this paper, we explore a method for solving the
Grad-Shafranov equation by using Physics-Informed Neural Networks (PINNs). For
PINNs, we optimize neural networks by directly minimizing the residual of the
PDE as a loss function. We show that PINNs can accurately and effectively solve
the Grad-Shafranov equation with several different boundary conditions. We also
explore the parameter space by varying the size of the model, the learning
rate, and boundary conditions to map various trade-offs such as between
reconstruction error and computational speed. Additionally, we introduce a
parameterized PINN framework, expanding the input space to include variables
such as pressure, aspect ratio, elongation, and triangularity in order to
handle a broader range of plasma scenarios within a single network.
Parametrized PINNs could be used in future work to solve inverse problems such
as shape optimization.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
We leverageformed-Informed Neural Networks (PINs) to learn solution functions of parametric Navier-Stokes equations (NSE)
We consider the parameter(s) of interest as inputs of PINs along with coordinates, and train PINs on numerical solutions of parametric-PDES for instances of the parameters.
We show that our proposed approach results in optimizing PINN models that learn the solution functions while making sure that flow predictions are in line with conservational laws of mass and momentum.
arXiv Detail & Related papers (2024-02-05T16:19:53Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural
network for solving partial differential equations [6.285167805465505]
Physics-informed neural networks (PINN) can achieve lower development and solving cost than traditional partial differential equation (PDE) solvers.
Due to the advantages of parameter sharing, spatial feature extraction and low inference cost, convolutional neural networks (CNN) are increasingly used in PINN.
arXiv Detail & Related papers (2022-09-06T12:26:22Z) - CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks [0.0]
We investigate the inverse problem for Partial Differential Equations (PDEs) in scenarios where the parameters of the given PDE dynamics may exhibit changepoints at random time.
We employ Physics-Informed Neural Networks (PINNs) - universal approximators capable of estimating the solution of any physical law.
We propose a PINNs extension using a Total-Variation penalty, which allows to accommodate multiple changepoints in the PDE dynamics.
arXiv Detail & Related papers (2022-08-18T04:01:07Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines.
Recent advances in deep learning have shown the great potential of physics-informed neural networks (NNs) to solve PDEs as a basis for data-driven inverse analysis.
We propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhCRyNet-s) for solving PDEs without any labeled data.
arXiv Detail & Related papers (2021-06-26T22:22:19Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.