論文の概要: Using Anomaly Detection to Detect Poisoning Attacks in Federated
Learning Applications
- arxiv url: http://arxiv.org/abs/2207.08486v2
- Date: Tue, 9 May 2023 13:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 17:48:25.664257
- Title: Using Anomaly Detection to Detect Poisoning Attacks in Federated
Learning Applications
- Title(参考訳): フェデレーション学習における毒素攻撃検出のための異常検出法
- Authors: Ali Raza, Shujun Li, Kim-Phuc Tran, and Ludovic Koehl
- Abstract要約: 毒殺などの敵対的な攻撃は多くの機械学習研究者の注目を集めている。
伝統的に、毒殺攻撃は訓練されたモデルを操作するために敵の訓練データを注入しようとする。
フェデレートラーニング(FL)において、データ中毒攻撃は、検出器による局所的な訓練データにアクセスできないため、より単純な方法では検出できない毒攻撃をモデル化するために一般化することができる。
本研究では,FLにおける有害な攻撃を検出するための新しい枠組みを提案する。このフレームワークは,公開データセットと監査者モデルに基づく参照モデルを用いて,悪意のある更新を検知する。
- 参考スコア(独自算出の注目度): 2.978389704820221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks such as poisoning attacks have attracted the attention of
many machine learning researchers. Traditionally, poisoning attacks attempt to
inject adversarial training data in order to manipulate the trained model. In
federated learning (FL), data poisoning attacks can be generalized to model
poisoning attacks, which cannot be detected by simpler methods due to the lack
of access to local training data by the detector. State-of-the-art poisoning
attack detection methods for FL have various weaknesses, e.g., the number of
attackers has to be known or not high enough, working with i.i.d. data only,
and high computational complexity. To overcome above weaknesses, we propose a
novel framework for detecting poisoning attacks in FL, which employs a
reference model based on a public dataset and an auditor model to detect
malicious updates. We implemented a detector based on the proposed framework
and using a one-class support vector machine (OC-SVM), which reaches the lowest
possible computational complexity O(K) where K is the number of clients. We
evaluated our detector's performance against state-of-the-art (SOTA) poisoning
attacks for two typical applications of FL: electrocardiograph (ECG)
classification and human activity recognition (HAR). Our experimental results
validated the performance of our detector over other SOTA detection methods.
- Abstract(参考訳): 毒殺などの敵対的な攻撃は多くの機械学習研究者の注目を集めている。
伝統的に、毒殺攻撃は訓練されたモデルを操作するために敵の訓練データを注入しようとする。
フェデレーション学習(fl)では、データ中毒攻撃をモデル化するために一般化することができるが、検出者がローカルトレーニングデータにアクセスできないため、単純な方法では検出できない。
FLの最先端の中毒攻撃検出手法には様々な弱点があり、例えば、攻撃者の数は、i.d.データのみを使用し、高い計算複雑性を持つ。
以上の弱点を克服するために,公的なデータセットと監査者モデルに基づく参照モデルを用いて悪意のある更新を検知するFLの有害な攻撃を検出する新しいフレームワークを提案する。
提案したフレームワークをベースとした1クラスサポートベクトルマシン(OC-SVM)を用いて,Kがクライアント数である最小計算複雑性O(K)に到達した。
心電図(ECG)分類と人的活動認識(HAR)の2つの典型的な適用例に対して,本検出器の性能評価を行った。
実験の結果,他のSOTA検出法に比べて検出性能が向上した。
関連論文リスト
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Poison is Not Traceless: Fully-Agnostic Detection of Poisoning Attacks [4.064462548421468]
本稿では,潜在的に有毒なデータセットの分析にのみ依存する攻撃を検知する新しいフレームワークであるDIVAを提案する。
評価のために,本稿ではラベルフリップ攻撃に対するDIVAを検証した。
論文 参考訳(メタデータ) (2023-10-24T22:27:44Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - AntidoteRT: Run-time Detection and Correction of Poison Attacks on
Neural Networks [18.461079157949698]
画像分類ネットワークに対する バックドア毒殺攻撃
本稿では,毒殺攻撃に対する簡易な自動検出・補正手法を提案する。
我々の手法は、一般的なベンチマークにおいて、NeuralCleanseやSTRIPといった既存の防御よりも優れています。
論文 参考訳(メタデータ) (2022-01-31T23:42:32Z) - DeepPoison: Feature Transfer Based Stealthy Poisoning Attack [2.1445455835823624]
DeepPoisonは、1つの発電機と2つの識別器の斬新な敵対ネットワークです。
DeepPoisonは最先端の攻撃成功率を91.74%まで達成できる。
論文 参考訳(メタデータ) (2021-01-06T15:45:36Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Can't Boil This Frog: Robustness of Online-Trained Autoencoder-Based
Anomaly Detectors to Adversarial Poisoning Attacks [26.09388179354751]
本研究は,オンライン学習型オートエンコーダを用いたアタック検出装置に対する中毒攻撃に焦点を当てた最初の研究である。
提案アルゴリズムは, オートエンコーダ検出器によって検出されない標的攻撃の原因となる毒のサンプルを生成することができることを示す。
この発見は、サイバー物理領域で使用されるニューラルネットワークベースの攻撃検出器が、他の問題領域よりも毒性に強いことを示唆している。
論文 参考訳(メタデータ) (2020-02-07T12:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。