Classifying COVID-19 vaccine narratives
- URL: http://arxiv.org/abs/2207.08522v2
- Date: Fri, 17 Nov 2023 09:13:27 GMT
- Title: Classifying COVID-19 vaccine narratives
- Authors: Yue Li, Carolina Scarton, Xingyi Song, Kalina Bontcheva (University of
Sheffield)
- Abstract summary: Vaccine hesitancy is widespread, despite the government's information campaigns and the efforts of the World Health Organisation (WHO)
This paper introduces a novel vaccine narrative classification task, which categorises COVID-19 vaccine claims into one of seven categories.
The paper also presents a neural vaccine narrative classifier that achieves an accuracy of 84% under cross-validation.
- Score: 7.784326429148358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vaccine hesitancy is widespread, despite the government's information
campaigns and the efforts of the World Health Organisation (WHO). Categorising
the topics within vaccine-related narratives is crucial to understand the
concerns expressed in discussions and identify the specific issues that
contribute to vaccine hesitancy. This paper addresses the need for monitoring
and analysing vaccine narratives online by introducing a novel vaccine
narrative classification task, which categorises COVID-19 vaccine claims into
one of seven categories. Following a data augmentation approach, we first
construct a novel dataset for this new classification task, focusing on the
minority classes. We also make use of fact-checker annotated data. The paper
also presents a neural vaccine narrative classifier that achieves an accuracy
of 84% under cross-validation. The classifier is publicly available for
researchers and journalists.
Related papers
- SPEED++: A Multilingual Event Extraction Framework for Epidemic Prediction and Preparedness [73.73883111570458]
We introduce the first multilingual Event Extraction framework for extracting epidemic event information for a wide range of diseases and languages.
Annotating data in every language is infeasible; thus we develop zero-shot cross-lingual cross-disease models.
Our framework can provide epidemic warnings for COVID-19 in its earliest stages in Dec 2019 from Chinese Weibo posts without any training in Chinese.
arXiv Detail & Related papers (2024-10-24T03:03:54Z) - Accurate Measures of Vaccination and Concerns of Vaccine Holdouts from
Web Search Logs [31.231365080959247]
We show how large-scale search engine logs and machine learning can be leveraged to fill gaps in vaccine data.
We develop a vaccine intent classifier that can accurately detect when a user is seeking the COVID-19 vaccine on search.
We use our classifier to identify two groups, vaccine early adopters and vaccine holdouts.
arXiv Detail & Related papers (2023-06-12T23:19:55Z) - VaxxHesitancy: A Dataset for Studying Hesitancy towards COVID-19
Vaccination on Twitter [6.061534265076204]
We create a new collection of over 3,101 tweets annotated with users' attitudes towards COVID-19 vaccination (stance)
To the best of our knowledge, these are the first dataset and model that model vaccine hesitancy as a category distinct from pro- and anti-vaccine stance.
arXiv Detail & Related papers (2023-01-17T02:00:31Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
arXiv Detail & Related papers (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
We find that doctors are overall more positive toward the COVID-19 vaccines.
Doctors are more concerned with the effectiveness of the vaccines over newer variants.
Nurses pay more attention to the potential side effects on children.
arXiv Detail & Related papers (2022-09-11T14:22:16Z) - Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude
Detection in Social Media [40.61499595293957]
We propose a novel semi-supervised approach for vaccine attitude detection, called VADet.
VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.
arXiv Detail & Related papers (2022-05-06T15:24:33Z) - VaccineLies: A Natural Language Resource for Learning to Recognize
Misinformation about the COVID-19 and HPV Vaccines [0.0]
VaccineLies is a collection of tweets propagating misinformation about two vaccines: the COVID-19 vaccines and the Human Papillomavirus (HPV) vaccines.
The ability to automatically recognize misinformation targeting vaccines on Twitter depends on the availability of data resources.
arXiv Detail & Related papers (2022-02-18T22:09:38Z) - Automatic Detection of COVID-19 Vaccine Misinformation with Graph Link
Prediction [2.0625936401496237]
Vaccine hesitancy fueled by social media misinformation about COVID-19 vaccines became a major hurdle.
We present CoVaxLies, a new dataset of tweets judged relevant to several misinformation targets about COVID-19 vaccines.
Our method organizes CoVaxLies in a Misinformation Knowledge Graph as it casts misinformation detection as a graph link prediction problem.
arXiv Detail & Related papers (2021-08-04T23:27:10Z) - Classifying vaccine sentiment tweets by modelling domain-specific
representation and commonsense knowledge into context-aware attentive GRU [9.8215089151757]
Vaccine hesitancy and refusal can create clusters of low vaccine coverage and reduce the effectiveness of vaccination programs.
Social media provides an opportunity to estimate emerging risks to vaccine acceptance by including geographical location and detailing vaccine-related concerns.
Methods for classifying social media posts, such as vaccine-related tweets, use language models (LMs) trained on general domain text.
We present a novel end-to-end framework consisting of interconnected components that use domain-specific LM trained on vaccine-related tweets and models commonsense knowledge into a bidirectional gated recurrent network (CK-BiGRU) with context-aware attention.
arXiv Detail & Related papers (2021-06-17T15:16:08Z) - Misinformation Has High Perplexity [55.47422012881148]
We propose to leverage the perplexity to debunk false claims in an unsupervised manner.
First, we extract reliable evidence from scientific and news sources according to sentence similarity to the claims.
Second, we prime a language model with the extracted evidence and finally evaluate the correctness of given claims based on the perplexity scores at debunking time.
arXiv Detail & Related papers (2020-06-08T15:13:44Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
We examine the extent to which the vaccination debate on Twitter is conductive to potential outreach to the vaccination hesitant.
We discover that the vaccination skeptics, as well as the advocates, reside in their own distinct "echo chambers"
At the center of these echo chambers we find the ardent supporters, for which we build highly accurate network- and content-based classifiers.
arXiv Detail & Related papers (2020-03-26T13:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.