Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification
- URL: http://arxiv.org/abs/2212.13898v1
- Date: Fri, 16 Dec 2022 13:57:41 GMT
- Title: Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification
- Authors: Jai Gupta, Yi Tay, Chaitanya Kamath, Vinh Q. Tran, Donald Metzler,
Shailesh Bavadekar, Mimi Sun, Evgeniy Gabrilovich
- Abstract summary: This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
- Score: 60.49594822215981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the devastating outbreak of COVID-19, vaccines are one of the crucial
lines of defense against mass infection in this global pandemic. Given the
protection they provide, vaccines are becoming mandatory in certain social and
professional settings. This paper presents a classification model for detecting
COVID-19 vaccination related search queries, a machine learning model that is
used to generate search insights for COVID-19 vaccinations. The proposed method
combines and leverages advancements from modern state-of-the-art (SOTA) natural
language understanding (NLU) techniques such as pretrained Transformers with
traditional dense features. We propose a novel approach of considering dense
features as memory tokens that the model can attend to. We show that this new
modeling approach enables a significant improvement to the Vaccine Search
Insights (VSI) task, improving a strong well-established gradient-boosting
baseline by relative +15% improvement in F1 score and +14% in precision.
Related papers
- Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection [6.949493332885247]
ProVaccine is a novel deep learning solution that integrates latent vector representations of protein sequences and structures.
We also compile the most comprehensive immunogenicity dataset to date, encompassing over 9,500 antigen sequences, structures, and immunogenicity labels from bacteria, viruses, and tumors.
Our work provides an effective tool for vaccine design and sets valuable benchmarks for future research.
arXiv Detail & Related papers (2024-10-03T16:33:35Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - Modeling the effect of the vaccination campaign on the Covid-19 pandemic [0.0]
We introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution during the vaccination campaign.
The model contains several parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure.
Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels.
arXiv Detail & Related papers (2021-08-27T19:12:13Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - Artificial Intelligence for COVID-19 Detection -- A state-of-the-art
review [5.237999056930947]
The emergence of COVID-19 has necessitated many efforts by the scientific community for its proper management.
The use of Deep Learning (DL) and Artificial Intelligence (AI) can be sought in all of the above-mentioned spheres.
It can be evaluated that DL and AI can be effectively implemented to withstand the challenges posed by the global emergency.
arXiv Detail & Related papers (2020-11-25T07:02:14Z) - VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution
using Reinforcement Learning [6.167847933188907]
VacSIM is a novel pipeline that dovetails Deep Reinforcement Learning models into a Contextual Bandits approach for optimizing the distribution of COVID-19 vaccine.
We evaluate this framework against a naive allocation approach of distributing vaccine proportional to the incidence of COVID-19 cases in five different States across India.
arXiv Detail & Related papers (2020-09-14T17:37:13Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2 is continuing to spread globally and has become a pandemic.
There is an urgent need to develop machine learning techniques to predict the spread of COVID-19.
arXiv Detail & Related papers (2020-07-29T10:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.