GANDALF: Gated Adaptive Network for Deep Automated Learning of Features
- URL: http://arxiv.org/abs/2207.08548v6
- Date: Wed, 10 Jan 2024 00:28:04 GMT
- Title: GANDALF: Gated Adaptive Network for Deep Automated Learning of Features
- Authors: Manu Joseph, Harsh Raj
- Abstract summary: Gated Adaptive Network for Deep Automated Learning of Features (GANDALF)
GANDALF relies on a new tabular processing unit with a gating mechanism and in-built feature selection called Gated Feature Learning Unit (GFLU)
We demonstrate that GANDALF outperforms or stays at-par with SOTA approaches like XGBoost, SAINT, FT-Transformers, etc.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel high-performance, interpretable, and parameter \&
computationally efficient deep learning architecture for tabular data, Gated
Adaptive Network for Deep Automated Learning of Features (GANDALF). GANDALF
relies on a new tabular processing unit with a gating mechanism and in-built
feature selection called Gated Feature Learning Unit (GFLU) as a feature
representation learning unit. We demonstrate that GANDALF outperforms or stays
at-par with SOTA approaches like XGBoost, SAINT, FT-Transformers, etc. by
experiments on multiple established public benchmarks. We have made available
the code at github.com/manujosephv/pytorch_tabular under MIT License.
Related papers
- Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformers (ViT) and Visual Prompt Tuning (VPT) achieve state-of-the-art performance with improved efficiency in various computer vision tasks.
We present a novel algorithm, SGPT, that integrates Generalized FL (GFL) and Personalized FL (PFL) approaches by employing a unique combination of both shared and group-specific prompts.
arXiv Detail & Related papers (2023-10-27T17:22:09Z) - Large Language Models for Automated Data Science: Introducing CAAFE for
Context-Aware Automated Feature Engineering [52.09178018466104]
We introduce Context-Aware Automated Feature Engineering (CAAFE) to generate semantically meaningful features for datasets.
Despite being methodologically simple, CAAFE improves performance on 11 out of 14 datasets.
We highlight the significance of context-aware solutions that can extend the scope of AutoML systems to semantic AutoML.
arXiv Detail & Related papers (2023-05-05T09:58:40Z) - OpenFE: Automated Feature Generation with Expert-level Performance [12.953889090552616]
We present OpenFE, an automated feature generation tool that provides competitive results against machine learning experts.
OpenFE achieves high efficiency and accuracy with two components: 1) a novel feature boosting method for accurately evaluating the incremental performance of candidate features and 2) a two-stage pruning algorithm that performs feature pruning in a coarse-to-fine manner.
arXiv Detail & Related papers (2022-11-22T03:23:40Z) - AutoGL: A Library for Automated Graph Learning [67.63587865669372]
We present Automated Graph Learning (AutoGL), the first dedicated library for automated machine learning on graphs.
AutoGL is open-source, easy to use, and flexible to be extended.
We also present AutoGL-light, a lightweight version of AutoGL to facilitate customizing pipelines and enriching applications.
arXiv Detail & Related papers (2021-04-11T10:49:23Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z) - VEGA: Towards an End-to-End Configurable AutoML Pipeline [101.07003005736719]
VEGA is an efficient and comprehensive AutoML framework that is compatible and optimized for multiple hardware platforms.
VEGA can improve the existing AutoML algorithms and discover new high-performance models against SOTA methods.
arXiv Detail & Related papers (2020-11-03T06:53:53Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
novel platform Resource-Aware AutoML (RA-AutoML)
RA-AutoML enables flexible and generalized algorithms to build machine learning models subjected to multiple objectives.
arXiv Detail & Related papers (2020-10-30T19:37:48Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - PHOTONAI -- A Python API for Rapid Machine Learning Model Development [2.414341608751139]
PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning model development.
It functions as a unifying framework allowing the user to easily access and combine algorithms from different toolboxes into custom algorithm sequences.
arXiv Detail & Related papers (2020-02-13T10:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.