FunQG: Molecular Representation Learning Via Quotient Graphs
- URL: http://arxiv.org/abs/2207.08597v1
- Date: Mon, 18 Jul 2022 13:36:20 GMT
- Title: FunQG: Molecular Representation Learning Via Quotient Graphs
- Authors: Hossein Hajiabolhassan, Zahra Taheri, Ali Hojatnia, Yavar Taheri
Yeganeh
- Abstract summary: We propose a novel molecular graph coarsening framework named FunQG.
FunQG uses Functional groups as influential building blocks of a molecule to determine its properties.
We show that the resulting informative graphs are much smaller than the molecular graphs and thus are good candidates for training GNNs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning expressive molecular representations is crucial to facilitate the
accurate prediction of molecular properties. Despite the significant
advancement of graph neural networks (GNNs) in molecular representation
learning, they generally face limitations such as neighbors-explosion,
under-reaching, over-smoothing, and over-squashing. Also, GNNs usually have
high computational complexity because of the large-scale number of parameters.
Typically, such limitations emerge or increase when facing relatively
large-size graphs or using a deeper GNN model architecture. An idea to overcome
these problems is to simplify a molecular graph into a small, rich, and
informative one, which is more efficient and less challenging to train GNNs. To
this end, we propose a novel molecular graph coarsening framework named FunQG
utilizing Functional groups, as influential building blocks of a molecule to
determine its properties, based on a graph-theoretic concept called Quotient
Graph. By experiments, we show that the resulting informative graphs are much
smaller than the molecular graphs and thus are good candidates for training
GNNs. We apply the FunQG on popular molecular property prediction benchmarks
and then compare the performance of a GNN architecture on the obtained datasets
with several state-of-the-art baselines on the original datasets. By
experiments, this method significantly outperforms previous baselines on
various datasets, besides its dramatic reduction in the number of parameters
and low computational complexity. Therefore, the FunQG can be used as a simple,
cost-effective, and robust method for solving the molecular representation
learning problem.
Related papers
- Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
We present an exhaustive review of the latest advancements in graph representation learning and Graph Neural Networks (GNNs)
GNNs, tailored to handle graph-structured data, excel in deriving insights and predictions from intricate relational information.
Our work delves into the capabilities of GNNs, examining their foundational designs and their application in addressing real-world challenges.
arXiv Detail & Related papers (2024-11-09T19:10:33Z) - Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
We introduce the textbf Structural Similarity Motif GNN (MSSM-GNN), a novel molecular graph representation learning method.
In particular, we propose a specially designed graph that leverages graph kernel algorithms to represent the similarity between molecules quantitatively.
We employ GNNs to learn feature representations from molecular graphs, aiming to enhance the accuracy of property prediction by incorporating additional molecular representation information.
arXiv Detail & Related papers (2024-09-13T06:59:10Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - MolGraph: a Python package for the implementation of molecular graphs
and graph neural networks with TensorFlow and Keras [51.92255321684027]
MolGraph is a graph neural network (GNN) package for molecular machine learning (ML)
MolGraph implements a chemistry module to accommodate the generation of small molecular graphs, which can be passed to a GNN algorithm to solve a molecular ML problem.
GNNs proved useful for molecular identification and improved interpretability of chromatographic retention time data.
arXiv Detail & Related papers (2022-08-21T18:37:41Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z) - GraphPiece: Efficiently Generating High-Quality Molecular Graph with
Substructures [7.021635649909492]
We propose a method to automatically discover common substructures, which we call em graph pieces, from given molecular graphs.
Based on graph pieces, we leverage a variational autoencoder to generate molecules in two phases: piece-level graph generation followed by bond completion.
arXiv Detail & Related papers (2021-06-29T05:26:18Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.