Graph neural networks for the prediction of molecular structure-property
relationships
- URL: http://arxiv.org/abs/2208.04852v1
- Date: Mon, 25 Jul 2022 11:30:44 GMT
- Title: Graph neural networks for the prediction of molecular structure-property
relationships
- Authors: Jan G. Rittig, Qinghe Gao, Manuel Dahmen, Alexander Mitsos, Artur M.
Schweidtmann
- Abstract summary: Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
- Score: 59.11160990637615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular property prediction is of crucial importance in many disciplines
such as drug discovery, molecular biology, or material and process design. The
frequently employed quantitative structure-property/activity relationships
(QSPRs/QSARs) characterize molecules by descriptors which are then mapped to
the properties of interest via a linear or nonlinear model. In contrast, graph
neural networks, a novel machine learning method, directly work on the
molecular graph, i.e., a graph representation where atoms correspond to nodes
and bonds correspond to edges. GNNs allow to learn properties in an end-to-end
fashion, thereby avoiding the need for informative descriptors as in
QSPRs/QSARs. GNNs have been shown to achieve state-of-the-art prediction
performance on various property predictions tasks and represent an active field
of research. We describe the fundamentals of GNNs and demonstrate the
application of GNNs via two examples for molecular property prediction.
Related papers
- Investigating Graph Neural Networks and Classical Feature-Extraction Techniques in Activity-Cliff and Molecular Property Prediction [0.6906005491572401]
Molecular featurisation refers to the transformation of molecular data into numerical feature vectors.
Message-passing graph neural networks (GNNs) have emerged as a novel method to learn differentiable features directly from molecular graphs.
arXiv Detail & Related papers (2024-11-20T20:07:48Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
We introduce the textbf Structural Similarity Motif GNN (MSSM-GNN), a novel molecular graph representation learning method.
In particular, we propose a specially designed graph that leverages graph kernel algorithms to represent the similarity between molecules quantitatively.
We employ GNNs to learn feature representations from molecular graphs, aiming to enhance the accuracy of property prediction by incorporating additional molecular representation information.
arXiv Detail & Related papers (2024-09-13T06:59:10Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.