Time-Efficient Constant-Space-Overhead Fault-Tolerant Quantum
Computation
- URL: http://arxiv.org/abs/2207.08826v2
- Date: Wed, 24 Aug 2022 20:19:09 GMT
- Title: Time-Efficient Constant-Space-Overhead Fault-Tolerant Quantum
Computation
- Authors: Hayata Yamasaki, Masato Koashi
- Abstract summary: Protocols for fault-tolerant quantum computation (FTQC) demand excessive space overhead of physical qubits per logical qubit.
We introduce an alternative approach using a concatenation of multiple small-size quantum codes for the constant-space-overhead FTQC.
Our protocol accomplishes FTQC even if a decoder has non-constant runtime, unlike the existing constant-space-overhead protocol.
- Score: 5.33024001730262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scalable realization of quantum computing to attain substantial speedups over
classical computing requires fault tolerance. Conventionally, protocols for
fault-tolerant quantum computation (FTQC) demand excessive space overhead of
physical qubits per logical qubit. A more recent protocol to achieve
constant-space-overhead FTQC using quantum low-density parity-check (LDPC)
codes thus attracts considerable attention but suffers from another drawback:
it incurs polynomially long time overhead. To address these problems, we here
introduce an alternative approach using a concatenation of multiple small-size
quantum codes for the constant-space-overhead FTQC rather than a single
large-size quantum LDPC code. We develop techniques for concatenating different
quantum Hamming codes with growing sizes. As a result, we construct a
low-overhead protocol to achieve constant space overhead and only
quasi-polylogarithmic time overhead simultaneously. Our protocol accomplishes
FTQC even if a decoder has non-constant runtime, unlike the existing
constant-space-overhead protocol. These results establish a foundation for FTQC
realizing a large class of quantum speedups within feasibly bounded space
overhead yet negligibly short time overhead. This achievement opens a promising
avenue for the low-overhead FTQC based on code concatenation.
Related papers
- Polylog-time- and constant-space-overhead fault-tolerant quantum computation with quantum low-density parity-check codes [2.048226951354646]
A major challenge in fault-tolerant quantum computation is to reduce both space overhead and time overhead.
We show that a protocol using non-vanishing-rate quantum low-density parity-check codes achieves constant space overhead and polylogarithmic time overhead.
arXiv Detail & Related papers (2024-11-06T06:06:36Z) - Fault-Tolerant Belief Propagation for Practical Quantum Memory [6.322831694506286]
A fault-tolerant approach to reliable quantum memory is essential for scalable quantum computing.
We propose a decoder that utilizes a space-time Tanner graph across multiple rounds of syndrome extraction with mixed-alphabet error variables.
Our simulations demonstrate high error thresholds of 0.4%-0.87% and strong error-floor performance for topological code families.
arXiv Detail & Related papers (2024-09-27T12:21:45Z) - Quantum memory based on concatenating surface codes and quantum Hamming codes [0.0]
We study the concatenation of surface codes with quantum Hamming codes as a quantum memory.
A high error threshold is achieved, which can in principle be pushed up to the threshold of the surface code.
The advantage in suppressing errors starts to show for a quantum memory of intermediate scale.
arXiv Detail & Related papers (2024-07-23T04:47:14Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Low-overhead fault-tolerant quantum computing using long-range
connectivity [2.867517731896504]
Scheme for low-overhead fault-tolerant quantum computation based on quantum low-density parity-check codes.
We estimate order-of-magnitude improvements in the overheads for processing around one hundred logical qubits.
arXiv Detail & Related papers (2021-10-20T21:49:48Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.