Quantum Error Correction via Noise Guessing Decoding
- URL: http://arxiv.org/abs/2208.02744v3
- Date: Fri, 27 Oct 2023 17:09:55 GMT
- Title: Quantum Error Correction via Noise Guessing Decoding
- Authors: Diogo Cruz, Francisco A. Monteiro, Bruno C. Coutinho
- Abstract summary: Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation.
This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction codes (QECCs) play a central role in both quantum
communications and quantum computation. Practical quantum error correction
codes, such as stabilizer codes, are generally structured to suit a specific
use, and present rigid code lengths and code rates. This paper shows that it is
possible to both construct and decode QECCs that can attain the maximum
performance of the finite blocklength regime, for any chosen code length when
the code rate is sufficiently high. A recently proposed strategy for decoding
classical codes called GRAND (guessing random additive noise decoding) opened
doors to efficiently decode classical random linear codes (RLCs) performing
near the maximum rate of the finite blocklength regime. By using noise
statistics, GRAND is a noise-centric efficient universal decoder for classical
codes, provided that a simple code membership test exists. These conditions are
particularly suitable for quantum systems, and therefore the paper extends
these concepts to quantum random linear codes (QRLCs), which were known to be
possible to construct but whose decoding was not yet feasible. By combining
QRLCs and a newly proposed quantum-GRAND, this work shows that it is possible
to decode QECCs that are easy to adapt to changing conditions. The paper starts
by assessing the minimum number of gates in the coding circuit needed to reach
the QRLCs' asymptotic performance, and subsequently proposes a quantum-GRAND
algorithm that makes use of quantum noise statistics, not only to build an
adaptive code membership test, but also to efficiently implement syndrome
decoding.
Related papers
- List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Analog information decoding of bosonic quantum LDPC codes [3.34006871348377]
We propose novel decoding methods that explicitly exploit the syndrome information obtained from a bosonic qubit readout.
Our results lay the foundation for general decoding algorithms using analog information and demonstrate promising results in the direction of fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-11-02T15:41:03Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Adaptive quantum codes: constructions, applications and fault tolerance [0.0]
A perfect quantum code requires atleast five physical qubits to observe a noticeable improvement over the no-QEC scenario.
We propose an adaptive QEC protocol that allows transmission of quantum information from one site to the other over a 1-d spin chain with high fidelity.
arXiv Detail & Related papers (2022-03-07T10:06:16Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Efficient Concatenated Bosonic Code for Additive Gaussian Noise [0.0]
Bosonic codes offer noise resilience for quantum information processing.
We propose using a Gottesman-Kitaev-Preskill code to detect discard error-prone qubits and a quantum parity code to handle residual errors.
Our work may have applications in a wide range of quantum computation and communication scenarios.
arXiv Detail & Related papers (2021-02-02T08:01:30Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.