Indoor Localization for Personalized Ambient Assisted Living of Multiple
Users in Multi-Floor Smart Environments
- URL: http://arxiv.org/abs/2207.09025v1
- Date: Tue, 19 Jul 2022 02:07:55 GMT
- Title: Indoor Localization for Personalized Ambient Assisted Living of Multiple
Users in Multi-Floor Smart Environments
- Authors: Nirmalya Thakur and Chia Y. Han
- Abstract summary: This paper makes four scientific contributions towards the development of personalized ambient assisted living.
First, it presents a probabilistic reasoning-based mathematical approach to model all possible forms of user interactions.
Second, it presents a system that uses this approach with a machine learning method to model individual user profiles and user-specific user interactions.
Third, to address the need to develop highly accurate indoor localization systems for increased trust, reliance, and seamless user acceptance, the framework introduces a novel methodology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a multifunctional interdisciplinary framework that makes
four scientific contributions towards the development of personalized ambient
assisted living, with a specific focus to address the different and dynamic
needs of the diverse aging population in the future of smart living
environments. First, it presents a probabilistic reasoning-based mathematical
approach to model all possible forms of user interactions for any activity
arising from the user diversity of multiple users in such environments. Second,
it presents a system that uses this approach with a machine learning method to
model individual user profiles and user-specific user interactions for
detecting the dynamic indoor location of each specific user. Third, to address
the need to develop highly accurate indoor localization systems for increased
trust, reliance, and seamless user acceptance, the framework introduces a novel
methodology where two boosting approaches Gradient Boosting and the AdaBoost
algorithm are integrated and used on a decision tree-based learning model to
perform indoor localization. Fourth, the framework introduces two novel
functionalities to provide semantic context to indoor localization in terms of
detecting each user's floor-specific location as well as tracking whether a
specific user was located inside or outside a given spatial region in a
multi-floor-based indoor setting. These novel functionalities of the proposed
framework were tested on a dataset of localization-related Big Data collected
from 18 different users who navigated in 3 buildings consisting of 5 floors and
254 indoor spatial regions. The results show that this approach of indoor
localization for personalized AAL that models each specific user always
achieves higher accuracy as compared to the traditional approach of modeling an
average user.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Modelling of Bi-directional Spatio-Temporal Dependence and Users'
Dynamic Preferences for Missing POI Check-in Identification [38.51964956686177]
We develop a model, named Bi-STDDP, which can integrate bi-directional-temporal dependence and users' dynamic preferences.
Results demonstrate significant improvements of our model compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T03:54:37Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
Federated learning allows clients to collaboratively learn statistical models while keeping their data local.
Recent personalized federated learning methods train a separate model for each client while still leveraging the knowledge available at other clients.
We show on a suite of federated datasets that this approach achieves significantly higher accuracy and fairness than state-of-the-art methods.
arXiv Detail & Related papers (2021-11-17T19:40:07Z) - Subspace Learning for Personalized Federated Optimization [7.475183117508927]
We propose a method to address the problem of personalized learning in AI systems.
We show that our method achieves consistent gains both in personalized and unseen client evaluation settings.
arXiv Detail & Related papers (2021-09-16T00:03:23Z) - Multimodal Approaches for Indoor Localization for Ambient Assisted
Living in Smart Homes [0.0]
It presents a Big-Data driven methodology that studies the multimodal components of user interactions.
Second, it introduces a context independent approach that can interpret the accelerometer and gyroscope data.
Third, it presents a methodology to detect the spatial coordinates of a user's indoor position that outperforms all similar works in this field.
arXiv Detail & Related papers (2021-06-29T17:46:21Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z) - Examination and Extension of Strategies for Improving Personalized
Language Modeling via Interpolation [59.35932511895986]
We demonstrate improvements in offline metrics at the user level by interpolating a global LSTM-based authoring model with a user-personalized n-gram model.
We observe that over 80% of users receive a lift in perplexity, with an average of 5.2% in perplexity lift per user.
arXiv Detail & Related papers (2020-06-09T19:29:41Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
This work investigates the task of unsupervised model personalization, adapted to continually evolving, unlabeled local user images.
We provide a novel Dual User-Adaptation framework (DUA) to explore the problem.
This framework flexibly disentangles user-adaptation into model personalization on the server and local data regularization on the user device.
arXiv Detail & Related papers (2020-03-30T09:35:12Z) - Personalized Federated Learning: A Meta-Learning Approach [28.281166755509886]
In Federated Learning, we aim to train models across multiple computing units (users)
In this paper, we study a personalized variant of the federated learning in which our goal is to find an initial shared model that current or new users can easily adapt to their local dataset by performing one or a few steps of gradient descent with respect to their own data.
arXiv Detail & Related papers (2020-02-19T01:08:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.