論文の概要: Data Science and Machine Learning in Education
- arxiv url: http://arxiv.org/abs/2207.09060v1
- Date: Tue, 19 Jul 2022 04:20:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 14:37:47.948028
- Title: Data Science and Machine Learning in Education
- Title(参考訳): 教育におけるデータサイエンスと機械学習
- Authors: Gabriele Benelli, Thomas Y. Chen, Javier Duarte, Matthew Feickert,
Matthew Graham, Lindsey Gray, Dan Hackett, Phil Harris, Shih-Chieh Hsu,
Gregor Kasieczka, Elham E. Khoda, Matthias Komm, Mia Liu, Mark S. Neubauer,
Scarlet Norberg, Alexx Perloff, Marcel Rieger, Claire Savard, Kazuhiro Terao,
Savannah Thais, Avik Roy, Jean-Roch Vlimant, Grigorios Chachamis
- Abstract要約: 我々は高エネルギー物理(HEP)におけるデータサイエンス(DS)と機械学習(ML)の役割の増大について論じる。
本稿では,HEP研究とDS/ML教育の相乗効果を探求し,この交差点における機会と課題について議論し,相互に有益なコミュニティ活動を提案する。
- 参考スコア(独自算出の注目度): 7.998668690552295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing role of data science (DS) and machine learning (ML) in
high-energy physics (HEP) is well established and pertinent given the complex
detectors, large data, sets and sophisticated analyses at the heart of HEP
research. Moreover, exploiting symmetries inherent in physics data have
inspired physics-informed ML as a vibrant sub-field of computer science
research. HEP researchers benefit greatly from materials widely available
materials for use in education, training and workforce development. They are
also contributing to these materials and providing software to DS/ML-related
fields. Increasingly, physics departments are offering courses at the
intersection of DS, ML and physics, often using curricula developed by HEP
researchers and involving open software and data used in HEP. In this white
paper, we explore synergies between HEP research and DS/ML education, discuss
opportunities and challenges at this intersection, and propose community
activities that will be mutually beneficial.
- Abstract(参考訳): 高エネルギー物理学(hep)におけるデータサイエンス(ds)と機械学習(ml)の役割の高まりは、hep研究の中心にある複雑な検出器、大規模データ、セット、高度な分析によって確立され、関連する。
さらに、物理データに固有の対称性を活用することで、コンピュータサイエンス研究の活発なサブフィールドとして、物理学にインフォームドされたMLが着想を得た。
HEP研究者は、教育、訓練、労働開発のために広く利用可能な材料から大きな恩恵を受ける。
また、これらの材料に貢献し、DS/ML関連の分野にソフトウェアを提供している。
物理学部は、ds、ml、物理学の交差点でコースを提供しており、しばしばhep研究者によって開発され、hepで使われるオープンソフトウェアとデータを含んでいる。
本稿では,HEP研究とDS/ML教育の相乗効果を探求し,この交差点における機会と課題について議論し,相互に有益なコミュニティ活動を提案する。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
大規模言語モデル(LLM)は、テキストやその他のデータ処理方法に革命をもたらした。
我々は,科学LLM間のクロスフィールドおよびクロスモーダル接続を明らかにすることで,研究ランドスケープのより総合的なビューを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-16T08:03:24Z) - Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications [3.430730454702436]
物理学と機械学習の交わりは、物理学の強化された機械学習(PEML)パラダイムを生み出した。
PEMLは、データまたは物理のみの手法の能力を向上し、個々の欠点を減らすことを目的としている。
本論文は, 科学・工学研究の限界を推し進める上で, PEMLの重要性を浮き彫りにするものである。
論文 参考訳(メタデータ) (2023-10-31T12:50:25Z) - A Critical Review of Physics-Informed Machine Learning Applications in
Subsurface Energy Systems [0.0]
物理インフォームド機械学習(PIML)技術は、物理原理をデータ駆動モデルに統合する。
PIMLは、モデルの一般化、物理法則の遵守、解釈可能性を改善する。
本稿では,主に石油・ガス産業における地下エネルギーシステムに関するPIML応用について概説する。
論文 参考訳(メタデータ) (2023-08-06T18:20:24Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
幾何戦略の有効性をベンチマークできるGeom3Dというプラットフォームを提案する。
Geom3Dは16の高度な対称性インフォームド幾何表現モデルと46の多様なデータセット上の14の幾何事前学習方法を含んでいる。
論文 参考訳(メタデータ) (2023-06-15T05:37:25Z) - Approach to Data Science with Multiscale Information Theory [0.0]
データサイエンスは、大規模で複雑なデータセットから貴重な洞察を抽出する上で重要な役割を果たす、多分野の分野である。
データサイエンスの世界では、情報理論(IT)と統計力学(SM)の2つの基本的な要素がある。
本稿では,このデータサイエンスの枠組みを粒子からなる大規模かつ複雑な機械システムに適用する。
論文 参考訳(メタデータ) (2023-05-23T01:08:50Z) - Large Language Models as Master Key: Unlocking the Secrets of Materials
Science with GPT [9.33544942080883]
本稿では,物質科学におけるデバイスレベルでの情報抽出の複雑さに対処するため,構造化情報推論(SII)と呼ばれる自然言語処理(NLP)タスクを提案する。
我々は、既存のペロブスカイト型太陽電池FAIRデータセットに91.8%のF1スコアでGPT-3をチューニングし、リリース以来のデータでデータセットを拡張した。
また、太陽電池の電気性能を予測する実験を設計し、大規模言語モデル(LLM)を用いてターゲットパラメータを持つ材料や装置の設計を行った。
論文 参考訳(メタデータ) (2023-04-05T04:01:52Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
我々は、MAPs研究プログラムの一環として、新しい素材の探索を加速する同じシミュレーションとAIツールが、根本的に新しいコンピュータ媒体の設計を可能にすると論じている。
シミュレーションに基づくMAPプログラムの概要を述べる。
我々は、材料研究者と計算機科学者の革新的なコラボレーションの新たな時代を導入することを期待している。
論文 参考訳(メタデータ) (2022-08-17T23:03:54Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
電磁法(EM)イメージングは、セキュリティ、バイオメディシン、地球物理学、各種産業のセンシングに広く応用されている。
機械学習(ML)技術,特に深層学習(DL)技術は,高速かつ正確な画像化の可能性を秘めている。
本稿では、学習に基づくEMイメージングに物理を取り入れる様々なスキームについて検討する。
論文 参考訳(メタデータ) (2022-07-26T02:10:15Z) - When Physics Meets Machine Learning: A Survey of Physics-Informed
Machine Learning [14.296078151381591]
物理インフォームド機械学習(PIML)は、トレーニングデータの不足を軽減し、モデルの一般化性を高め、結果の物理的妥当性を確保する効果的な方法である。
1)PIMLの動機,(2)PIMLの物理知識,(3)PIMLの物理知識統合の方法の3つの側面から,PIMLにおける最近の多くの研究を概説する。
論文 参考訳(メタデータ) (2022-03-31T04:58:27Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。