論文の概要: Single Stage Virtual Try-on via Deformable Attention Flows
- arxiv url: http://arxiv.org/abs/2207.09161v1
- Date: Tue, 19 Jul 2022 10:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 14:03:51.901510
- Title: Single Stage Virtual Try-on via Deformable Attention Flows
- Title(参考訳): 変形性注意流による単段仮想試行
- Authors: Shuai Bai, Huiling Zhou, Zhikang Li, Chang Zhou, Hongxia Yang
- Abstract要約: 仮想試行は、ショップ内服と基準人物画像が与えられた写真リアルなフィッティング結果を生成することを目的としている。
マルチフロー推定に変形性アテンションスキームを適用した,変形性アテンションフロー(DAFlow)を新たに開発した。
提案手法は,定性的かつ定量的に最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 51.70606454288168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Virtual try-on aims to generate a photo-realistic fitting result given an
in-shop garment and a reference person image. Existing methods usually build up
multi-stage frameworks to deal with clothes warping and body blending
respectively, or rely heavily on intermediate parser-based labels which may be
noisy or even inaccurate. To solve the above challenges, we propose a
single-stage try-on framework by developing a novel Deformable Attention Flow
(DAFlow), which applies the deformable attention scheme to multi-flow
estimation. With pose keypoints as the guidance only, the self- and
cross-deformable attention flows are estimated for the reference person and the
garment images, respectively. By sampling multiple flow fields, the
feature-level and pixel-level information from different semantic areas are
simultaneously extracted and merged through the attention mechanism. It enables
clothes warping and body synthesizing at the same time which leads to
photo-realistic results in an end-to-end manner. Extensive experiments on two
try-on datasets demonstrate that our proposed method achieves state-of-the-art
performance both qualitatively and quantitatively. Furthermore, additional
experiments on the other two image editing tasks illustrate the versatility of
our method for multi-view synthesis and image animation.
- Abstract(参考訳): 仮想試行は、ショップ内服と基準人物画像が与えられた写真リアルなフィッティング結果を生成することを目的としている。
既存の手法は通常、衣類のワープとボディブレンディングを扱うための多段階のフレームワークを構築したり、ノイズや不正確なパーサーベースのラベルに大きく依存する。
以上の課題を解決するために,複数フロー推定に変形性注意スキームを適用した新しい変形性注意フロー(daflow)を開発し,単段トライオンフレームワークを提案する。
姿勢キーポイントのみを指導として、基準人物及び衣服画像に対して、自己変形性注意流及び横断変形性注意流を推定する。
複数の流れ場をサンプリングすることにより、異なる意味領域から特徴レベルと画素レベル情報を同時に抽出し、注目機構を介してマージする。
衣服の反りと身体の合成を同時に可能とし、エンドツーエンドでフォトリアリスティックな結果をもたらす。
2つの試行データセットに対する広範囲な実験により,提案手法は定性的かつ定量的に最先端の性能を達成することを示した。
さらに,他の2つの画像編集タスクに対する追加実験により,マルチビュー合成と画像アニメーションの汎用性が示された。
関連論文リスト
- One Diffusion to Generate Them All [54.82732533013014]
OneDiffusionは双方向画像合成と理解をサポートする汎用的で大規模な拡散モデルである。
テキスト、深さ、ポーズ、レイアウト、セマンティックマップなどの入力から条件生成を可能にする。
OneDiffusionは、シーケンシャルな画像入力を使用して、マルチビュー生成、カメラポーズ推定、即時パーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-11-25T12:11:05Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
本稿では,キュレートされた衣服を身に着けている人のイメージをレンダリングする,イメージベースの仮想試行について考察する。
衣服の忠実度を改善し,仮想試行画像を生成する新しい拡散モデルを提案する。
本稿では,一対の人着画像を用いたカスタマイズ手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T08:12:18Z) - Layered Rendering Diffusion Model for Zero-Shot Guided Image Synthesis [60.260724486834164]
本稿では,テキストクエリに依存する拡散モデルにおける空間制御性向上のための革新的な手法を提案する。
視覚誘導(Vision Guidance)とレイヤーレンダリング拡散(Layered Rendering Diffusion)フレームワーク(Layered Diffusion)という2つの重要なイノベーションを提示します。
本稿では,ボックス・ツー・イメージ,セマンティック・マスク・ツー・イメージ,画像編集の3つの実践的応用に適用する。
論文 参考訳(メタデータ) (2023-11-30T10:36:19Z) - Multi-scale Target-Aware Framework for Constrained Image Splicing
Detection and Localization [11.803255600587308]
統合パイプラインにおける特徴抽出と相関マッチングを結合するマルチスケールなターゲット認識フレームワークを提案する。
提案手法は,関連パッチの協調学習を効果的に促進し,特徴学習と相関マッチングの相互促進を行う。
我々の実験では、統一パイプラインを用いたモデルが、いくつかのベンチマークデータセット上で最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-08-18T07:38:30Z) - Bi-level Dynamic Learning for Jointly Multi-modality Image Fusion and
Beyond [50.556961575275345]
補完特性とカスケード二重タスク関連モジュールを融合する画像融合モジュールを構築した。
本研究では, 高速な1次近似により対応する勾配を計算し, 融合学習のための勾配のバランスをとるための動的重み付けアグリゲーションを提案する。
論文 参考訳(メタデータ) (2023-05-11T10:55:34Z) - Learning to search for and detect objects in foveal images using deep
learning [3.655021726150368]
本研究では,画像中のクラスを探索する人間の客観的な注意をエミュレートする固定予測モデルを用いる。
そして、各固定点のフェーブされた画像を分類して、シーンにターゲットが存在するか否かを判定する。
本稿では,2つのタスク間の知識伝達を可能とし,修正予測と検出を同時に行うことができる新しいデュアルタスクモデルを提案する。
論文 参考訳(メタデータ) (2023-04-12T09:50:25Z) - ZFlow: Gated Appearance Flow-based Virtual Try-on with 3D Priors [13.977100716044104]
画像ベースの仮想トライオンでは、特定の衣服を着たモデルの説得力のあるイメージを合成する。
近年の方法は2段階のプロセスを含む:i) モデル ii に合わせるために衣服を変形させる。
モデルや衣服に関する幾何学的な情報の欠如は、しばしば細かい細部を不適切にレンダリングする。
我々は、これらの懸念を軽減するために、エンドツーエンドのフレームワークであるZFlowを提案する。
論文 参考訳(メタデータ) (2021-09-14T22:41:14Z) - TSIT: A Simple and Versatile Framework for Image-to-Image Translation [103.92203013154403]
画像間翻訳のためのシンプルで多用途なフレームワークを提案する。
新たに提案した特徴変換を用いた2ストリーム生成モデルを提案する。
これにより、マルチスケールのセマンティック構造情報とスタイル表現を効果的に捕捉し、ネットワークに融合させることができる。
体系的な研究は、提案手法をいくつかの最先端タスク固有のベースラインと比較し、知覚的品質と定量的評価の両面での有効性を検証する。
論文 参考訳(メタデータ) (2020-07-23T15:34:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。