論文の概要: Multimodal hierarchical Variational AutoEncoders with Factor Analysis latent space
- arxiv url: http://arxiv.org/abs/2207.09185v3
- Date: Tue, 22 Oct 2024 08:17:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:26:06.977808
- Title: Multimodal hierarchical Variational AutoEncoders with Factor Analysis latent space
- Title(参考訳): 因子解析潜在空間を有する多モード階層型変分オートエンコーダ
- Authors: Alejandro Guerrero-López, Carlos Sevilla-Salcedo, Vanessa Gómez-Verdejo, Pablo M. Olmos,
- Abstract要約: 本研究では,変分オートエンコーダ(VAE)と因子解析潜時空間(FA-VAE)を組み合わせることで,制約に対処する新しい手法を提案する。
FA-VAE法は複数のVAEを用いて連続潜伏空間における各異種データビューのプライベート表現を学習する。
- 参考スコア(独自算出の注目度): 45.418113011182186
- License:
- Abstract: Purpose: Handling heterogeneous and mixed data types has become increasingly critical with the exponential growth in real-world databases. While deep generative models attempt to merge diverse data views into a common latent space, they often sacrifice interpretability, flexibility, and modularity. This study proposes a novel method to address these limitations by combining Variational AutoEncoders (VAEs) with a Factor Analysis latent space (FA-VAE). Methods: The proposed FA-VAE method employs multiple VAEs to learn a private representation for each heterogeneous data view in a continuous latent space. Information is shared between views using a low-dimensional latent space, generated via a linear projection matrix. This modular design creates a hierarchical dependency between private and shared latent spaces, allowing for the flexible addition of new views and conditioning of pre-trained models. Results: The FA-VAE approach facilitates cross-generation of data from different domains and enables transfer learning between generative models. This allows for effective integration of information across diverse data views while preserving their distinct characteristics. Conclusions: By overcoming the limitations of existing methods, the FA-VAE provides a more interpretable, flexible, and modular solution for managing heterogeneous data types. It offers a pathway to more efficient and scalable data-handling strategies, enhancing the potential for cross-domain data synthesis and model transferability.
- Abstract(参考訳): 目的: 実世界のデータベースが指数関数的に成長するにつれて, 異種データと混合データの種類を扱うことがますます重要になっている。
深層生成モデルは、多様なデータビューを共通の潜在空間にマージしようとする一方で、解釈可能性、柔軟性、モジュール化を犠牲にすることが多い。
本研究では,変分オートエンコーダ(VAE)と因子解析潜在空間(FA-VAE)を組み合わせることで,これらの制約に対処する新しい手法を提案する。
方法:提案手法は複数のVAEを用いて連続潜伏空間における異種データビューのプライベート表現を学習する。
情報は、線形投影行列によって生成される低次元潜在空間を用いてビュー間で共有される。
このモジュラー設計は、プライベートおよび共有潜在空間間の階層的な依存関係を生成し、新しいビューのフレキシブルな追加と事前訓練されたモデルの条件付けを可能にする。
結果: FA-VAEアプローチは,異なる領域からのデータを相互に生成し,生成モデル間での伝達学習を可能にする。
これにより、さまざまなデータビューにまたがって情報を効果的に統合し、個々の特性を保存できる。
結論: 既存のメソッドの制限を克服することによって、FA-VAEは異種データ型を管理するための、より解釈可能な、柔軟な、モジュール化されたソリューションを提供します。
より効率的でスケーラブルなデータ処理戦略へのパスを提供し、ドメイン間データ合成とモデル転送可能性を高める。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Flexible inference in heterogeneous and attributed multilayer networks [21.349513661012498]
我々は任意の種類の情報を持つ多層ネットワークで推論を行う確率的生成モデルを開発した。
インド農村部における社会支援ネットワークにおける様々なパターンを明らかにする能力を示す。
論文 参考訳(メタデータ) (2024-05-31T15:21:59Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
本稿では,現在のアプローチの限界に対処する新しい変分オートエンコーダ(VAE)モデルを提案する。
本手法は,TVAEモデルにインスパイアされたベイジアン・ガウス混合モデル(BGM)をVAEアーキテクチャに組み込む。
我々は,2つの医療関連データセットを含む混合データ型を持つ実世界の3つのデータセットに対して,我々のモデルを徹底的に検証する。
論文 参考訳(メタデータ) (2024-04-12T12:31:06Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Encoding Domain Knowledge in Multi-view Latent Variable Models: A
Bayesian Approach with Structured Sparsity [7.811916700683125]
MuVI はドメインインフォームド・マルチビュー潜在変数モデルのための新しいアプローチである。
私たちのモデルは、機能セットの形でノイズの多いドメインの専門知識を統合することができることを実証しています。
論文 参考訳(メタデータ) (2022-04-13T08:22:31Z) - Heterogeneous Target Speech Separation [52.05046029743995]
我々は,非相互排他的概念を用いて興味のあるソースを区別できる単一チャネルターゲットソース分離のための新しいパラダイムを提案する。
提案する異種分離フレームワークは,分散シフトが大きいデータセットをシームレスに利用することができる。
論文 参考訳(メタデータ) (2022-04-07T17:14:20Z) - MoReL: Multi-omics Relational Learning [26.484803417186384]
ヘテロジニアスビューの分子間相互作用をコードする多部グラフを効率的に推定する新しいディープベイズ生成モデルを提案する。
このようなディープベイズ生成モデルにおける最適輸送正則化により、ビュー固有側情報を組み込むだけでなく、分布ベース正則化によるモデルの柔軟性も向上する。
論文 参考訳(メタデータ) (2022-03-15T02:50:07Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。