論文の概要: VoloGAN: Adversarial Domain Adaptation for Synthetic Depth Data
- arxiv url: http://arxiv.org/abs/2207.09204v1
- Date: Tue, 19 Jul 2022 11:30:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 13:39:04.773679
- Title: VoloGAN: Adversarial Domain Adaptation for Synthetic Depth Data
- Title(参考訳): VoloGAN:合成深度データに対する逆領域適応
- Authors: Sascha Kirch, Rafael Pag\'es, Sergio Arnaldo, Sergio Mart\'in
- Abstract要約: 本稿では,高品質な3Dモデルの合成RGB-D画像を,消費者の深度センサで生成可能なRGB-D画像に変換する対向領域適応ネットワークであるVoloGANを提案する。
本システムは,実世界の捕捉条件を再現した単一視点3次元再構成アルゴリズムにおいて,高精度なトレーニングデータを生成するのに特に有用である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present VoloGAN, an adversarial domain adaptation network that translates
synthetic RGB-D images of a high-quality 3D model of a person, into RGB-D
images that could be generated with a consumer depth sensor. This system is
especially useful to generate high amount training data for single-view 3D
reconstruction algorithms replicating the real-world capture conditions, being
able to imitate the style of different sensor types, for the same high-end 3D
model database. The network uses a CycleGAN framework with a U-Net architecture
for the generator and a discriminator inspired by SIV-GAN. We use different
optimizers and learning rate schedules to train the generator and the
discriminator. We further construct a loss function that considers image
channels individually and, among other metrics, evaluates the structural
similarity. We demonstrate that CycleGANs can be used to apply adversarial
domain adaptation of synthetic 3D data to train a volumetric video generator
model having only few training samples.
- Abstract(参考訳): 本稿では,高品質な3Dモデルの合成RGB-D画像を,消費者の深度センサで生成可能なRGB-D画像に変換する対向領域適応ネットワークVoloGANを提案する。
このシステムは,同一のハイエンド3Dモデルデータベースに対して,実世界の捕捉条件を再現した単一ビュー3D再構成アルゴリズムの高精度なトレーニングデータを生成するのに特に有用である。
このネットワークはCycleGANフレームワークを使用し、ジェネレータ用のU-NetアーキテクチャとSIV-GANにインスパイアされた識別器を備えている。
異なるオプティマイザと学習率スケジュールを使用して、ジェネレータと判別器をトレーニングします。
さらに,画像チャネルを個別に考慮し,その構造的類似性を評価する損失関数を構築する。
本稿では,CycleGANを用いて合成3Dデータの対角領域適応を応用し,少数のトレーニングサンプルを持つボリュームビデオジェネレータモデルを訓練できることを実証する。
関連論文リスト
- 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
本稿では,人間の画像とそれに対応する3Dメッシュアノテーションをシームレスに生成できるHumanWildという,最近の拡散モデルに基づく効果的なアプローチを提案する。
生成モデルを排他的に活用することにより,大規模な人体画像と高品質なアノテーションを生成し,実世界のデータ収集の必要性を解消する。
論文 参考訳(メタデータ) (2024-03-17T06:31:16Z) - Large Generative Model Assisted 3D Semantic Communication [51.17527319441436]
本稿では,GAM-3DSC(Generative AI Model Assisted 3D SC)システムを提案する。
まず,ユーザ要求に基づいて3次元シナリオからキーセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティクスを抽出する。
次に、これらの多視点画像を符号化するための適応意味圧縮モデル(ASCM)を提案する。
最後に、物理チャネルのチャネル状態情報(CSI)を推定・精査するために、条件付き生成逆数ネットワークと拡散モデル支援チャネル推定(GDCE)を設計する。
論文 参考訳(メタデータ) (2024-03-09T03:33:07Z) - Using convolutional neural networks for stereological characterization
of 3D hetero-aggregates based on synthetic STEM data [0.0]
パラメトリックな3Dモデルが提示され、そこから多数の仮想ヘテロアグリゲートが生成される。
仮想構造は、仮想走査透過電子顕微鏡(STEM)画像を生成するために物理シミュレーションツールに渡される。
畳み込みニューラルネットワークは、2次元STEM画像からヘテロアグリゲートの3次元構造を予測するために訓練される。
論文 参考訳(メタデータ) (2023-10-27T22:49:08Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
本稿では,RGB-Dシーケンスからのリアルタイム意味マッピングのための新しい手法を提案する。
2DニューラルネットワークとSLAMシステムに基づく3Dネットワークと3D占有マッピングを組み合わせる。
本システムは,2D-3Dネットワークベースシステムにおいて,最先端のセマンティックマッピング品質を実現する。
論文 参考訳(メタデータ) (2023-06-28T22:36:44Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z) - Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator [68.0533826852601]
3Dを意識した画像合成は、画像のリアルな2D画像の描画が可能な生成モデルを学ぶことを目的としている。
既存の方法では、適度な3D形状が得られない。
本稿では,3次元GANの改良を目的とした幾何学的識別器を提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:37Z) - Differentiable Rendering for Synthetic Aperture Radar Imagery [0.0]
本稿では,3次元コンピュータグラフィックスの手法とニューラルレンダリングを組み合わせた合成開口レーダ(SAR)画像の微分可能レンダリング手法を提案する。
高忠実度シミュレーションSARデータを用いた限られたSAR画像からの3次元オブジェクト再構成の逆画像問題に対するアプローチを実証する。
論文 参考訳(メタデータ) (2022-04-04T05:27:40Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - Zero in on Shape: A Generic 2D-3D Instance Similarity Metric learned
from Synthetic Data [3.71630298053787]
本稿では,RGB画像と非テクスチャ型3Dモデルとを表現形状の類似性で比較するネットワークアーキテクチャを提案する。
我々のシステムはゼロショット検索に最適化されており、訓練で示されることのない形状を認識することができる。
論文 参考訳(メタデータ) (2021-08-09T14:44:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。