VoloGAN: Adversarial Domain Adaptation for Synthetic Depth Data
- URL: http://arxiv.org/abs/2207.09204v1
- Date: Tue, 19 Jul 2022 11:30:41 GMT
- Title: VoloGAN: Adversarial Domain Adaptation for Synthetic Depth Data
- Authors: Sascha Kirch, Rafael Pag\'es, Sergio Arnaldo, Sergio Mart\'in
- Abstract summary: We present VoloGAN, an adversarial domain adaptation network that translates synthetic RGB-D images of a high-quality 3D model of a person, into RGB-D images that could be generated with a consumer depth sensor.
This system is especially useful to generate high amount training data for single-view 3D reconstruction algorithms replicating the real-world capture conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present VoloGAN, an adversarial domain adaptation network that translates
synthetic RGB-D images of a high-quality 3D model of a person, into RGB-D
images that could be generated with a consumer depth sensor. This system is
especially useful to generate high amount training data for single-view 3D
reconstruction algorithms replicating the real-world capture conditions, being
able to imitate the style of different sensor types, for the same high-end 3D
model database. The network uses a CycleGAN framework with a U-Net architecture
for the generator and a discriminator inspired by SIV-GAN. We use different
optimizers and learning rate schedules to train the generator and the
discriminator. We further construct a loss function that considers image
channels individually and, among other metrics, evaluates the structural
similarity. We demonstrate that CycleGANs can be used to apply adversarial
domain adaptation of synthetic 3D data to train a volumetric video generator
model having only few training samples.
Related papers
- 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
We propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations.
By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
arXiv Detail & Related papers (2024-03-17T06:31:16Z) - Large Generative Model Assisted 3D Semantic Communication [51.17527319441436]
We propose a Generative AI Model assisted 3D SC (GAM-3DSC) system.
First, we introduce a 3D Semantic Extractor (3DSE) to extract key semantics from a 3D scenario based on user requirements.
We then present an Adaptive Semantic Compression Model (ASCM) for encoding these multi-perspective images.
Finally, we design a conditional Generative adversarial network and Diffusion model aided-Channel Estimation (GDCE) to estimate and refine the Channel State Information (CSI) of physical channels.
arXiv Detail & Related papers (2024-03-09T03:33:07Z) - Using convolutional neural networks for stereological characterization
of 3D hetero-aggregates based on synthetic STEM data [0.0]
A parametric 3D model is presented, from which a wide spectrum of virtual hetero-aggregates can be generated.
The virtual structures are passed to a physics-based simulation tool in order to generate virtual scanning transmission electron microscopy (STEM) images.
Convolutional neural networks are trained to predict 3D structures of hetero-aggregates from 2D STEM images.
arXiv Detail & Related papers (2023-10-27T22:49:08Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator [68.0533826852601]
3D-aware image synthesis aims at learning a generative model that can render photo-realistic 2D images while capturing decent underlying 3D shapes.
Existing methods fail to obtain moderate 3D shapes.
We propose a geometry-aware discriminator to improve 3D-aware GANs.
arXiv Detail & Related papers (2022-09-30T17:59:37Z) - Differentiable Rendering for Synthetic Aperture Radar Imagery [0.0]
We propose an approach for differentiable rendering of Synthetic Aperture Radar (SAR) imagery, which combines methods from 3D computer graphics with neural rendering.
We demonstrate the approach on the inverse graphics problem of 3D Object Reconstruction from limited SAR imagery using high-fidelity simulated SAR data.
arXiv Detail & Related papers (2022-04-04T05:27:40Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
We propose a three-stage framework named Multi-Initialization Optimization Network (MION)
In the first stage, we strategically select different coarse 3D reconstruction candidates which are compatible with the 2D keypoints of input sample.
In the second stage, we design a mesh refinement transformer (MRT) to respectively refine each coarse reconstruction result via a self-attention mechanism.
Finally, a Consistency Estimation Network (CEN) is proposed to find the best result from mutiple candidates by evaluating if the visual evidence in RGB image matches a given 3D reconstruction.
arXiv Detail & Related papers (2021-12-24T02:43:58Z) - Zero in on Shape: A Generic 2D-3D Instance Similarity Metric learned
from Synthetic Data [3.71630298053787]
We present a network architecture which compares RGB images and untextured 3D models by the similarity of the represented shape.
Our system is optimised for zero-shot retrieval, meaning it can recognise shapes never shown in training.
arXiv Detail & Related papers (2021-08-09T14:44:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.